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Streaming Sample Interface
In this section...
“What Is a Streaming Sample Interface?” on page 1-2
“How Does a Streaming Sample Interface Work?” on page 1-2
“Why Use a Streaming Sample Interface?” on page 1-2
“Sample Stream Conversion” on page 1-3
“Timing Diagram of Serial Sample Interface” on page 1-3
“Using the nextFrame Output Signal” on page 1-4

What Is a Streaming Sample Interface?
In hardware, processing an entire frame of data at one time has a high cost in memory and area. To
save resources, serial processing is preferable in HDL designs. Wireless HDL Toolbox blocks operate
on one sample at a time rather than a frame. The blocks accept and return data as a serial stream of
samples and control signals. The control signals indicate the frame boundaries. The protocol mimics
the characteristics of a real-world system, including inactive intervals between samples and frames.

How Does a Streaming Sample Interface Work?
The control protocol uses start and end signals to demark each frame, and a valid signal to indicate
which samples to process. The Wireless HDL Toolbox streaming sample protocol allows you to
configure the number of idle cycles between samples and between frames. Idle cycles model the
bursty character of real-world systems.

This protocol allows for frames of different sizes, such as if runt or partial frames enter the system
due to synchronization changes.

Why Use a Streaming Sample Interface?
Format Independence

The blocks that use this interface do not need a configuration option for an exact frame size or
inactive intervals. In addition, if you change the input data timing for your design, you do not need to
update each block. Instead, update the stream configuration once at the serialization step. Some
blocks still require a maximum frame size parameter to allocate memory resources.

Error Tolerance

By using a streaming sample interface with control signals, each Wireless HDL Toolbox block starts
computation on a fresh set of samples at the start-of-frame signal. Computations on the new frame
occur whether or not the block receives the end signal for the previous frame.

The protocol tolerates minor timing errors. If the number of valid and invalid cycles between start
and end signals varies, the blocks continue to operate correctly. This protocol makes the system
resilient to runt frames and synchronization changes.

The Wireless HDL Toolbox encoder blocks require minimum between-frame spacing to accommodate
insertion of codewords. The turbo and convolutional decoder blocks require that the previous frame

1 Model Architecture
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is decoded (has asserted the frame end signal) before the next frame arrives. The polar, LPDC, and
RS encoder and decoder blocks provide a signal to indicate when the block is ready to receive the
start of a new frame.

Sample Stream Conversion
Use the Frame To Samples block to convert framed data to a stream of samples and control signals
that conform to this protocol. The control signals are grouped in a bus data type called
samplecontrol.

The Frame To Samples block can serialize fixed-size frames. If your frames vary in size, use the
whdlFramesToSamples function to convert framed data to vectors of samples and control signals in
MATLAB®. Then import the vectors to Simulink®. Use the Sample Control Bus Creator block to create
a samplecontrol bus in your model.

If your data is already in a serial format, design your own logic to generate these control signals from
your existing serial control scheme.

Supported Sample Data Types

Wireless HDL Toolbox blocks have an input and output port, sample, for the streaming sample data.
The blocks capture one sample at a time from the input, and produce one sample at a time for output.
The samples can be one of these supported data types.

Port Description Data Type
sample Scalar integer value that represents one sample.

The protocol also allows for a vector of integer
values that represent a single sample, such as for
turbo-encoded samples.

Supported data types include:

• Boolean
• uint or int
• ufix or sfix

double and single are supported
for simulation but not for HDL code
generation.

Streaming Sample Control Signals

Wireless HDL Toolbox blocks have an input and output port, ctrl, for the frame control signals
relating to each sample. These three control signals indicate the validity of a sample and the
boundaries of the frame. The control signal port is a nonvirtual bus data type called samplecontrol.
For details of the bus data type, see “Sample Control Bus” on page 1-7.

Timing Diagram of Serial Sample Interface
The timing diagram illustrates the streaming sample protocol. It shows a six-sample input frame and
the equivalent sequence of control and data signals.

 Streaming Sample Interface
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The input frame is ([1 2 3 4 5 6])', and the serializer is configured to insert idle cycles around
the valid samples:

• One idle cycle between samples
• Three idle cycles between frames
• One value representing each sample (default output size)

You can specify these parameters by using either the Frame To Samples block or the
whdlFramesToSamples function.

The control signals start and end are 1 for the first and last valid samples of the frame, respectively.
The valid signal is 1 for each valid input sample. The valid signal is 0 for the idle cycles inserted
between the samples and between the frames. The six-sample frame is now represented by streaming
data over 15 cycles.

Using the nextFrame Output Signal
The NR Polar Encoder, NR Polar Decoder, NR LDPC Encoder, NR LDPC Decoder, and RS Decoder
blocks each provide an output signal to indicate when the block is ready to receive the start of a new
frame. This signal is necessary because these blocks cannot accept a new frame at certain stages of
internal computations, and the latency of those stages can vary with the values of input ports.

Port Description Data Type
nextFrame Boolean scalar that indicates when the block can

accept the start of a new frame
Boolean

This waveform shows the NR Polar Encoder block processing several frames. The nextFrame output
signal is 0 when the block is processing data, and 1 when the block is ready to receive the start of a
new frame. The cursors show the latency varying with the values of the input K and E port values.
For the first frame with given K and E values, the block must determine the message length and
information bit mapping for those values. This configuration stage means the block needs some time
before it is ready to accept the next input frame. For subsequent frames with the same values for K
and E, the block is ready sooner because it does not need to recompute the configuration.
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If the block receives an input start signal while nextFrame is 0, the block discards the frame in
progress and begins processing the new data. This waveform shows an NR Polar Encoder input frame
(3) applied when nextFrame is 0. The block discards the frame in progress (2) and processes the
new frame (3) as normal.

If the block receives an invalid input frame, for example, if the frame size is not within the supported
range, then the block sets nextFrame to 1 one cycle after the input end signal. This behavior
indicates that the input frame is discarded. This waveform shows an NR Polar Encoder input frame
(1) that does not have the correct number of samples expected for the accompanying K and E values.
The waveform shows the nextFrame signal set to 1 immediately after the input end signal from
frame 1. The block discards the frame in progress (1) and processes the new frame (2) as normal.

 Streaming Sample Interface
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See Also
Blocks
Frame To Samples | Samples To Frame

Functions
whdlFramesToSamples | whdlSamplesToFrames

Related Examples
• “Verify Turbo Decoder with Streaming Data from MATLAB”
• “Verify Turbo Decoder with Framed Data from MATLAB”
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Sample Control Bus
Wireless HDL Toolbox blocks use a nonvirtual bus data type, samplecontrol, for control signals
associated with serial data. The bus contains three boolean signals indicating the validity of a
sample and the boundaries of the frame. You can easily connect one block to another, because all
Wireless HDL Toolbox blocks use this bus for input and output. To convert frames into a sample
stream and a samplecontrol bus, use the Frame To Samples block. This block serializes fixed-size
frames. If your frames vary in size, use the whdlFramesToSamples function to convert the frames to
a data vector in MATLAB, and then import the data into Simulink.

Signal Description Data Type
start true for the first sample in the frame Boolean
end true for the last sample in the frame Boolean
valid true for any valid sample Boolean

Troubleshooting:
When you generate HDL code from a Simulink model that uses this bus, you may need to declare an
instance of samplecontrol bus in the base workspace. If you encounter the error Cannot resolve
variable 'samplecontrol' when you generate HDL code in Simulink, use the
samplecontrolbus function to create an instance of the bus type. Then try generating HDL code
again.

To avoid this issue, the Wireless HDL Toolbox model template includes this line in the InitFcn
callback.

evalin('base','samplecontrolbus')

You can also call this command from the MATLAB command line.

See Also
Blocks
Frame To Samples | Samples To Frame

More About
• “Streaming Sample Interface” on page 1-2

 Sample Control Bus
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Configure the Simulink Environment for Hardware Design

About Simulink Model Templates
Simulink model templates provide common configuration settings and best practices for new models.
Instead of using the default canvas of a new model, select a template model to help you get started.

For more information on Simulink model templates, see “Build and Edit a Model Interactively”.

Create Model Using Wireless HDL Toolbox Model Template
1

Click the Simulink button, , or type simulink at the MATLAB command prompt.
2 On the Simulink start page, find the Wireless HDL Toolbox section, and click the Streaming

Data from MATLAB or Framed Data from MATLAB template.

A new model, with the template contents and settings, opens in the Simulink Editor. Select Save to
save the model.

Alternatively, you can create a new model from the template on the command line. For example:

new_system my_whdl_Fmodel FromTemplate whdl_framed_data.sltx
open_system my_whdl_Fmodel

Or:

new_system my_whdl_Smodel FromTemplate whdl_streaming_data.sltx
open_system my_whdl_Smodel
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Wireless HDL Toolbox Model Templates
Both Wireless HDL Toolbox model templates include an empty subsystem, HDL Algorithm. This
subsystem accepts and returns streaming data and accompanying control signals using the
samplecontrolbus. You can design an HDL-targeted algorithm within this subsystem.

The templates also configure the model for HDL code generation. Both templates:

• Configure solver settings equivalent to calling hdlsetup
• Display data rates and data types in the Model Editor
• Create an instance of samplecontrolbus in the workspace (in InitFcn)
• Enable fileIO mode when generating an HDL test bench

The simulation time, input data, and block parameters are defined in the callback function, InitFcn.
To view or edit this function, on the Modeling tab, expand Model Settings and click Model
Properties, and then on the Callbacks tab, click InitFcn*.

Framed Data Template

The Framed Data from MATLAB template imports framed data from the MATLAB workspace,
assuming all frames are the same size. Then, it converts the data to a sample stream by using the
Frame To Samples block.

The output of the HDL Algorithm subsystem is connected to a Samples To Frame block. This block
converts the output back to framed data for export to the MATLAB workspace.

The InitFcn defines placeholder input frames and settings for the Frame Input From Workspace,
Frame To Samples, and Samples To Frame blocks.

The StopFcn applies the valid signal to the output data and creates a single variable in the
workspace.

The model has one data rate for the framed data and a faster data rate for the sample stream. You
can display these rates as different colors in the Simulink model.

Streaming Data Template

Use the Streaming Data from MATLAB template when your data stream has different-sized frames.
The InitFcn defines placeholder input frames and uses the whdlFramesToSamples function to
convert framed data to vectors of data and control signals. The From Workspace block imports these
variables to the model.

 Configure the Simulink Environment for Hardware Design
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To connect to the HDL Algorithm subsystem and any Wireless HDL Toolbox blocks that you add inside
it, the model converts the control signals to the samplecontrolbus type, using the Sample Control
Bus Creator block.

The model exports the streaming data and control signals back to the MATLAB workspace. The
StopFcn uses the whdlSamplesToFrames function to convert them back to framed data.

The model has a single data rate because all signals in the model represent streaming samples.

See Also
Blocks
Frame To Samples | Sample Control Bus Creator | Samples To Frame

Functions
whdlFramesToSamples | whdlSamplesToFrames

More About
• “Streaming Sample Interface” on page 1-2
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HDL Code Generation Support
You can use Simulink for rapid prototyping of hardware designs. Wireless HDL Toolbox blocks, when
used with HDL Coder™, support HDL code generation. HDL Coder tools generate target-independent
synthesizable Verilog® and VHDL® code for FPGA programming or ASIC prototyping and design.

HDL Code Generation Support in Wireless HDL Toolbox
Most blocks in Wireless HDL Toolbox support HDL code generation.

The following blocks are for simulation only and are not supported for HDL code generation:

• Frame To Samples
• Samples To Frame
• FIL Frame To Samples
• FIL Samples To Frame

Other Blocks Supporting HDL Code Generation
Other MathWorks® products also include blocks supported for HDL code generation that you can use
to build up your design.

In the Simulink library browser, you can find libraries of blocks supported for HDL code generation in
the HDL Coder, Communications Toolbox HDL Support, DSP System Toolbox HDL Support
block libraries, and others.

To create a library of HDL-supported blocks from all your installed products, enter hdllib at the
MATLAB command line. This command requires an HDL Coder license.

You can also view blocks that are supported for HDL code generation in documentation by filtering
the block reference list. Click Blocks in the blue bar at the top of the Help window, then select the
HDL code generation check box at the bottom of the left column. The blocks are listed in their
respective products. You can use the table of contents in the left column to navigate between
products and categories.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page for block
implementations, properties, and restrictions for HDL code generation.
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Streaming Sample Interface in HDL
The streaming sample control bus data type used by Wireless HDL Toolbox blocks is flattened into
separate signals in HDL.

In VHDL, the interface is declared as:

  PORT( clk             :   IN    std_logic;
        reset           :   IN    std_logic;
        enb             :   IN    std_logic;
        in0             :   IN    std_logic_vector(7 DOWNTO 0); -- uint8
        in1_start       :   IN    std_logic;
        in1_end         :   IN    std_logic;
        in1_valid       :   IN    std_logic;
        out0            :   OUT   std_logic_vector(7 DOWNTO 0); -- uint8
        out1_start      :   OUT   std_logic;
        out1_end        :   OUT   std_logic;
        out1_valid      :   OUT   std_logic
        );

In Verilog, the interface is declared as:

 HDL Code Generation Support
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  input   clk;
  input   reset;
  input   enb;
  input   [7:0] in0;  // uint8
  input   in1_start;
  input   in1_end;
  input   in1_valid;
  output  [7:0] out0;  // uint8
  output  out1_start;
  output  out1_end;
  output  out1_valid;

See Also

More About
• “Streaming Sample Interface” on page 1-2
• “Generate HDL Code” on page 2-5
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Generate HDL Code
You can generate HDL code from subsystems that include blocks supported for HDL code generation,
such as the model in “Verify Turbo Decoder with Streaming Data from MATLAB”. In that example,
you can generate HDL code from the HDL Algorithm subsystem.

To generate HDL code, you must have an HDL Coder license.

Prepare Model
Run hdlsetup to configure the model for HDL code generation. If you started your design using the
Wireless HDL Toolbox Simulink model template, your model is already configured for HDL code
generation.

Generate HDL Code
Right-click the HDL Algorithm subsystem, and select HDL Code > Generate HDL for Subsystem to
generate HDL using the default settings. The output log of this operation is shown in the MATLAB
Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation panes of the Simulink
Configuration Parameters dialog box. For guidance through the HDL code generation process, or to
select a target device or synthesis tool, right-click the HDL Algorithm subsystem, and select HDL
Code > HDL Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench
You can select options to generate a test bench in the Simulink Configuration Parameters dialog box
or in the HDL Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])

See Also
Functions
makehdl | makehdltb

Related Examples
• “HDL Code Generation and FPGA Synthesis from Simulink Model” (HDL Coder)
• “Choose a Test Bench for Generated HDL Code” (HDL Coder)
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FPGA-in-the-Loop
FPGA-in-the-loop (FIL) enables you to run a Simulink simulation that is synchronized with an HDL
design running on an Intel® or Xilinx® FPGA board. This link between the simulator and the board
enables you to verify HDL implementations directly against Simulink or MATLAB algorithms. You can
apply real-world data and test scenarios from these algorithms to the HDL design on the FPGA.

When simulating Wireless HDL Toolbox blocks, you must use a streaming sample interface.
Streaming sample data, while required for hardware implementations of communications systems, is
time-consuming at the FPGA-in-the-loop interface with Simulink.

You can convert from frames to samples and samples to frames either in Simulink or in MATLAB.
Depending on your workflow, you can optimize your FPGA-in-the-loop simulation in one of two ways.

One workflow is a Simulink model that imports framed data from MATLAB. This type of model then
uses the Frame To Samples and Samples To Frame blocks to convert the data format. For FPGA-in-
the-loop, replace these conversion blocks with FIL Frame To Samples and FIL Samples To Frame
blocks.

The other workflow is a Simulink model that imports streaming data from MATLAB. This type of
model goes with a MATLAB script that uses the ltehdlFrameToSamples and
ltehdlSamplesToFrames functions. For FPGA-in-the-loop, modify your script and Simulink model
so that they pass vectors of data to the FPGA-in-the-loop interface.

When you generate a programming file for a FIL target in Simulink, the tool creates a model to
compare the FIL simulation with your Simulink design. For Wireless HDL Toolbox designs, the FIL
block in that model replicates the sample-streaming interface and sends one sample at a time to the
FPGA. Both these modifications construct vectors that make more efficient use of the interface
between the Simulink model and the FPGA board.

The instructions that follow show how to modify FPGA-in-the-loop models for the “Verify Turbo
Decoder with Streaming Data from MATLAB” and “Verify Turbo Decoder with Framed Data from
MATLAB” workflow examples.

FIL Workflow: Framed Data from MATLAB
Autogenerated FIL Model

The generated model, including the FIL block that interfaces with the FPGA board, is shown for a
model that converts to streaming samples in Simulink. If each sample is represented by multiple
values, then the values are flattened into separate ports for FIL.
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The blue ToFILSrc subsystem branches the sample-stream input of the HDL Algorithm block to the
FromFILSrc subsystem. The blue ToFILSink subsystem branches the sample-stream output of the
HDL Algorithm block into the Compare subsystem, where it is compared with the output of the HDL
Algorithm_fil block. This setup is slow because the model sends only a single sample, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model

To improve the communication bandwidth with the FPGA board, modify the autogenerated model.
The modified model uses the FIL Frame To Samples and FIL Samples To Frame blocks to send one
frame at a time.

To create this modified FIL model:

1 Remove the blue subsystems, and create a branch at the frame input port of the Frame To
Samples block.
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2 Insert the FIL Frame To Samples block before the HDL Algorithm_fil block. Insert the FIL
Samples To Frame block after the HDL Algorithm_fil block.

3 Set the Output frame size on the FIL block to the input frame size.

4 In the FIL Frame To Samples and FIL Samples To Frame blocks, set the parameters to match the
settings of the Frame To Samples and Samples To Frame blocks.

5 Branch the frame output of the Samples To Frame block for comparison. You can compare the
entire frame at once with a Diff block. Compare the validOut signals using an XOR block.

The input size at the FIL block is the frame size from the input data frames. The vector size of the FIL
block ports does not modify the generated HDL code. It affects only the packet size of the
communication between the simulator and the FPGA board. This modified model sends an entire
frame to the FPGA board in each packet, significantly improving the efficiency of the communication
link.

FIL Workflow: Streaming Data from MATLAB
Autogenerated FIL Model

The generated model, including the FIL block that interfaces with the FPGA board, is shown for a
model that converts to streaming samples in MATLAB. If each sample is represented by multiple
values, then the values are flattened into separate ports for FIL.
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The blue ToFILSrc subsystem branches the sample-stream input of the HDL Algorithm block to the
FromFILSrc subsystem. The blue ToFILSink subsystem branches the sample-stream output of the
HDL Algorithm block into the Compare subsystem, where it is compared with the output of the HDL
Algorithm_fil block. This setup is slow because the model sends only a single sample, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model

To improve the communication bandwidth with the FPGA board, use the generated FIL block in a
different model. The alternate model imports and exports vectors of flattened data. The
accompanying MATLAB script reshapes the input and output data, and verifies the FIL output against
a behavioral model. Reshaping the data in MATLAB is easier and the simulation is faster than
reshaping in Simulink.
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First, modify the accompanying MATLAB script:

1 Pick a frame size for the FIL simulation. This size does not have to match the actual frame sizes
in the generated data. It can contain your entire data set. The FIL block divides the data into
maximum size packets for communication with the FPGA board.

filframesize = 99;
2 Combine the cell array of input frames into one matrix.

allframes = [inframes{:}];
3 Flatten the samples and control signals so there is one vector for each input port on the FIL

block. This model includes the LTE Turbo Decoder block, so the input samples consist of three
values.

sysIn = allframes(1:3:end); 
p1In  = allframes(2:3:end);
p2In  = allframes(3:3:end);

ctrlstartIn = ctrlIn(1:3:end);
ctrlendIn   = ctrlIn(2:3:end);
ctrlvalidIn = ctrlIn(3:3:end);

4 Call the FIL model.

simTime = size(allframes,1);
modelname = 'TurboDecoderStreamingFILVectortoSL';
open_system(modelname);
sim(modelname);

5 Reshape the output variables for input to the whdlSamplesToFrames function. Recreate an N-
by-3 control signal matrix and a vector of sample data. In this example, the output sample is a
single value. If the output sample is multiple values, build an N-by-SampleSize sample matrix.

sampleOut = squeeze(sampleOut_ts.Data);
ctrlOut = [squeeze(ctrlstartOut_ts.Data) ...
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     squeeze(ctrlendOut_ts.Data) ...
     squeeze(ctrlvalidOut_ts.Data)];

Then, create a Simulink model:

1 Copy the generated FIL block into a new model.
2 Configure and connect a Signal From Workspace block for each input port on the FIL block. Use

the variables from your MATLAB script as the parameter values.

3 Set the Output frame size on the FIL block to the desired FIL frame size.

4 Configure and connect a To Workspace block for each output port of the FIL block.

The input size at the FIL block is the frame size you specify on the Signal To Workspace blocks. The
vector size of the FIL block ports does not modify the generated HDL code. It affects only the packet
size of the communication between the simulator and the FPGA board. This modified model sends an
entire frame to the FPGA board in each packet, significantly improving the efficiency of the
communication link.

See Also

More About
• “Verify Turbo Decoder with Streaming Data from MATLAB”
• “Verify Turbo Decoder with Framed Data from MATLAB”
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Prototype LTE Algorithms on Hardware
The Communications Toolbox™ Support Package for Xilinx Zynq-Based Radio enables you to design,
prototype, and verify practical wireless communications systems on Xilinx Zynq-based radio
hardware.

• Use the Xilinx Zynq-based radio as an I/O peripheral to transmit and receive real-time arbitrary
waveforms using MATLAB System objects or Simulink blocks.

• Transmit and receive RF signals out of the box, enabling quick testing of SDR designs under real-
world conditions.

• Transmit and receive data on one or two channels.
• Configure RF radio settings easily.
• Acquire high-bandwidth signals by using burst mode.
• In Simulink, customize and prototype SDR algorithms. Target only the FPGA fabric of the device,

or deploy partitioned hardware-software co-design implementations across the ARM® processor
and the FPGA fabric of the device (Windows® operating system only).

• Run application examples to get started.

The support package provides two workflows:

• FPGA-only targeting – This workflow uses generated HDL code from HDL Coder and HDL Coder
Support Package for Xilinx Zynq Platform.

• Hardware-software co-design – This workflow also uses HDL Coder and HDL Coder Support
Package for Xilinx Zynq Platform. It additionally requires Simulink Coder™, Embedded Coder®,
and Embedded Coder Support Package for Xilinx Zynq Platform.

The “LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynq-Based Radio) support package example shows how to use
the hardware-software co-design workflow to deploy the design from “LTE HDL MIB Recovery” on
page 5-80 to a hardware board with a radio daughter card. The “LTE Receiver Using Analog Devices
AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio) support
package example shows how to capture live LTE data for use in testing your designs.

How to Install Support Packages
A support package is an add-on that enables you to use a MathWorks product with specific third-party
hardware and software. Support packages use the license of the base product. For instance,
Communications Toolbox Support Package for Xilinx Zynq-Based Radio requires a license for
Communications Toolbox.

Install support packages using the MATLAB Add-Ons menu. You can also use the Add-Ons menu to
update installed support package software or update the firmware on third-party hardware.

To install support packages, on the MATLAB Home tab, in the Environment section, click Add-Ons
> Get Hardware Support Packages. You can filter this list by selecting categories (such as
hardware vendor or application area), or by performing a keyword search.

Search the Add-Ons list for Zynq, and install these support packages:

• Communications Toolbox Support Package for Xilinx Zynq-Based Radio
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• HDL Coder Support Package for Xilinx Zynq Platform
• Embedded Coder Support Package for Xilinx Zynq Platform (only needed for hardware-software

co-design)

When the support package installation is complete, you must set up the host computer and radio
hardware. For Windows systems, the installer provides guided setup steps. For Linux® systems, the
installer links to manual setup instructions.

Design Requirements
The Communications Toolbox Support Package for Xilinx Zynq-Based Radio provides a reference
design that you can use to create an IP core that integrates into the radio hardware. Use the HDL
Workflow Advisor to guide you through generating a shareable and reusable IP core module using the
reference design.

To work with the reference design, your FPGA targeted design must use a streaming data interface
with a control signal that indicates the validity of each sample. Wireless HDL Toolbox blocks provide
this interface. Use the Sample Control Bus Selector block to separate the valid control signal from
the bus.

To deploy a design using the support package, your design must meet these preconditions.

• Each data input or output must be 16 bits. The HDL subsystem that fits into the reference design
does not support complex signals at the ports. To handle complex inputs and outputs, model
separate I and Q ports at the subsystem boundaries.

• Model all the ports for a given reference design, even when the ports are not used.
• In Simulink, the input and output data and valid signals must be driven at the same sample rate.

Therefore, the input and output clock rates of the subsystem must be equal.
• Clock the data and valid signals at the fastest rate of the HDL subsystem.
• For the FPGA-only targeting workflow:

• Duplex operation is not supported. Use either the transmit or the receive operation, but not
both.

• For the hardware-software co-design workflow:

• Duplex operation is supported. You can use both the Transmitter and Receiver blocks in the
same design.

• AXI4-Lite register ports can be clocked at arbitrary rates.
• In single-channel mode, you can transmit or receive data frames containing an even number of

samples only. If you use an odd number of samples, the software inserts a zero sample at the
end of each frame.

The real-time design encounters a larger volume of data and a larger set of state progressions than
you can simulate in Simulink. Make sure to model and generate control logic to handle the restart
between subframes. Consider adding extra subsystem ports for debug visibility of these extended
states once the design is deployed to the board.

Design for Debugging
Once the design is deployed to the board, you have much less visibility of the internal signals in your
design. To improve visibility, you can add temporary output ports to your subsystem before you
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generate your IP core. Signals that can help with debugging are design state, mux select signals or
other control parameters, and data values at intermediate stages of the data path. You can also add
input ports and muxes to give the option for external control of parameters such as mux select signals
and gain values.

When you simulate the design on the board in External mode, you can drive and view these ports
from Simulink. The Xilinx Zynq AXI Interface block from the generated software model provides a
Simulink interface to the input and output ports of your design while it is running on the board.

Once you are confident that your design is behaving as intended, you can remove these ports and
regenerate the IP core.

Another debugging strategy is to include a known input signal stored in memory on the FPGA. This
memory can be part of the generated HDL code from your Simulink model. The “LTE MIB Recovery
and Cell Scanner Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package
for Xilinx Zynq-Based Radio) support package example shows an input port externalDataSel that
provides a switch between a stored data set and the live data from the radio.

See Also

More About
• “Communications Toolbox Support Package for Xilinx Zynq-Based Radio”
• “FPGA Targeting Workflow” (Communications Toolbox Support Package for Xilinx Zynq-Based

Radio)
• “Hardware-Software Co-Design Workflow” (Communications Toolbox Support Package for Xilinx

Zynq-Based Radio)
• “LTE HDL MIB Recovery” on page 5-80
• “LTE HDL SIB1 Recovery” on page 5-63
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Append CRC Checksum to Streaming Data
This example shows how to use the LTE CRC Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™. The workflow follows these steps:

1 Generate frames of random input samples in MATLAB.
2 Generate and append a CRC checksum using the LTE Toolbox function lteCRCEncode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To encode the samples using a hardware-friendly architecture, run the Simulink model, which

contains the Wireless HDL Toolbox™ block LTE CRC Encoder.
5 Export the stream of bits, which now has an appended CRC checksum, to the MATLAB®

workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

frames and checksum.

Generate input data frames. Generate reference output data using lteCRCEncode.

frameLength = 256;
numframes   = 2;
rng(0);

txframes     = cell(1,numframes);
txcodeword   = cell(1,numframes);
rxSoftframes = cell(1,numframes);

for ii = 1:numframes

    txframes{ii}  = randi([0 1],frameLength,1)>0.5;

    CRCType = '24B';
    CRCMask = 50;
    txcodeword{ii} = lteCRCEncode(txframes{ii},CRCType,CRCMask);

end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. For CRC 24 encoding, the checksum adds 24 parity bits at
the end of the frame. The hardware-friendly algorithm also adds CRCLength + 3 cycles of latency.

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames  = 24+27;
outputSize               = 1;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
    txframes,idleCyclesBetweenSamples,idleCyclesBetweenFrames,outputSize);

Run the Simulink model.

sampletime = 1;
simTime = length(ctrlIn);
modelname = 'ltehdlCRCEncoderModel';
open(modelname);
sim(modelname);
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The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. Deserialize
the output samples, and compare the framed data to the reference data.

txhdlframes = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE CRC Encoder\n');
for ii = 1:numframes
    numBitsDiff = sum(double(txcodeword{ii})-double(txhdlframes{ii}));
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'], ii, numBitsDiff);
end

Maximum frame size computed to be 280 samples.

LTE CRC Encoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE CRC Encoder

Functions
lteCRCEncode

More About
• “Check for CRC Errors in Streaming Samples” on page 3-4
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Check for CRC Errors in Streaming Samples
This example shows how to use the LTE CRC Decoder block to check encoded data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

1 Generate frames of random input samples in MATLAB.
2 Generate and append the CRC checksum using the LTE Toolbox function lteCRCEncode.
3 Convert framed input data and checksum to a stream of samples and import it to Simulink®.
4 To check the samples against the checksum using a hardware-friendly architecture, run the

Simulink model. The model contains the Wireless HDL Toolbox™ block LTE CRC Decoder.
5 Export the stream of samples back to the MATLAB® workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

data.

Generate input data frames, then generate the CRC checksum using lteCRCEncode.

frameLength = 256;
numframes   = 2;
rng(0);

txframes     = cell(1,numframes);
txcodeword   = cell(1,numframes);
rxSoftframes = cell(1,numframes);

for ii = 1:numframes

    txframes{ii}  = randi([0 1],frameLength,1)>0.5;

    CRCType = '24B';
    CRCMask = 50;
    txcodeword{ii} = boolean(lteCRCEncode(txframes{ii},CRCType,CRCMask));

end

Serialize input data for the Simulink model. The LTE CRC Decoder block does not require any space
between frames, but the hardware-friendly algorithm adds latency of (3 * CRCLength / SampleSize) +
5 cycles. This example uses scalar input samples, so the latency is (3 * CRCLength) + 5.

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames  = 77;
samplesizeIn             = 1;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
    txcodeword,idleCyclesBetweenSamples,idleCyclesBetweenFrames,samplesizeIn);

Run the Simulink model.

sampletime = 1;
simTime = length(ctrlIn);
modelName = 'ltehdlCRCDecoderModel';
open_system(modelName);
sim(modelName);
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The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. Deserialize
the output samples, and compare the framed data to the input frames.

txhdlframes = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE CRC Decoder\n');
for ii = 1:numframes
    numBitsDiff = sum(double(txframes{ii})-double(txhdlframes{ii}));
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'], ii, numBitsDiff);
end

Maximum frame size computed to be 256 samples.

LTE CRC Decoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE CRC Decoder

Functions
lteCRCDecode

More About
• “Append CRC Checksum to Streaming Data” on page 3-2
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Turbo Encode Streaming Samples
This example shows how to use the LTE Turbo Encoder block to encode data, and how to compare the
hardware-friendly design with the results from LTE Toolbox™. The workflow follows these steps:

1 Generate frames of random input samples in MATLAB®.
2 Encode the data using the LTE Toolbox function lteTurboEncode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To encode the samples using a hardware-friendly architecture, run the Simulink model, which

contains the Wireless HDL Toolbox™ block LTE Turbo Encoder.
5 Export the stream of encoded samples to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

data.

Generate input data frames. Generate reference encoded data using lteTurboEncode.

rng(0);
turboframesize = 40;
numframes = 2;

txBits    = cell(1,numframes);
codedData = cell(1,numframes);

for ii = 1:numframes
    txBits{ii} = logical(randi([0 1],turboframesize,1));
    codedData{ii} = lteTurboEncode(txBits{ii});
end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully encoded before the next one starts. The LTE Turbo Encoder block takes inframesize + 16
cycles to complete encoding of a frame.

inframes = txBits;

inframesize = size(inframes{1},1);

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = inframesize+16;

[sampleIn,ctrlIn] = ...
    whdlFramesToSamples(inframes, ...
                          idlecyclesbetweensamples, ...
                          idlecyclesbetweenframes);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete encoding of both frames.

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrlIn,1);
modelname = 'ltehdlTurboEncoderModel';
open_system(modelname);
sim(modelname);
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The Simulink model exports sampleOut_ts and ctrlOut_ts back to the MATLAB workspace.
Deserialize the output samples, and compare the framed data to the reference encoded frames.

The output samples of the LTE Turbo Encoder block are interleaved with the parity bits.

Hardware-friendly output: S_1 P1_1 P2_1 S2 P1_2 P2_2 ... Sn P1_n P2_n

LTE Toolbox output: S_1 S_2 ... S_n P1_1 P1_2 ... P1_n P2_1 P2_2 ... P2_n

Reorder the samples using the interleave option of the whdlSamplesToFrames function. Compare
the reordered output frames with the reference encoded frames.

sampleOut = sampleOut';
interleaveSamples = true;
outframes = whdlSamplesToFrames(sampleOut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Turbo Encoder\n');
for ii = 1:numframes
    numBitsDiff = sum(outframes{ii} ~= codedData{ii});
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 132 samples.

LTE Turbo Encoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE Turbo Encoder

Functions
lteTurboEncode

More About
• “Turbo Decode Streaming Samples” on page 3-8
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Turbo Decode Streaming Samples
This example shows how to use the LTE Turbo Decoder block to decode data, and how to compare
the hardware-friendly design with the results from LTE Toolbox™.

1 Generate frames of random input samples in MATLAB®. Encode the samples and add noise to
the data.

2 Decode the data using the LTE Toolbox function, lteTurboDecode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To decode the samples using a hardware-friendly architecture, execute the Simulink model,

which contains the LTE Turbo Decoder block.
5 Export the stream of decoded bits to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the decoded

frames from Step 2.

Generate input data frames. Turbo encode the data, modulate the message, and add noise to the
resulting constellation. Demodulate the noisy constellation and generate soft bit values. Generate
reference decoded data using lteTurboDecode. For the hardware-friendly model, convert the soft
bits into a fixed-point data type.

rng(0);
numframes = 2;

txBits   = cell(1,numframes);
softBits = cell(1,numframes);
rxBits   = cell(1,numframes);
inframes = cell(1,numframes);

for ii = 1:numframes
    txBits{ii} = randi([0 1],6144,1);
    codedData = lteTurboEncode(txBits{ii});
    txSymbols = lteSymbolModulate(codedData,'QPSK');
    noise = 0.5*complex(randn(size(txSymbols)),randn(size(txSymbols)));
    rxSymbols = txSymbols + noise;
    softBits{ii} = lteSymbolDemodulate(rxSymbols,'QPSK','Soft');
    rxBits{ii} = lteTurboDecode(softBits{ii});
    inframes{ii} = fi(softBits{ii},1,5,2);
end

Serialize input data for the Simulink model. Leave enough time between frames for each frame to be
fully decoded before the next one starts. The LTE Turbo Decoder block takes 2 *
numTurboIterations * HalfIterationLatency + ( inframesize / samplesizeIn ) cycles to
complete decoding of a frame. For details of the HalfIterationLatency calculation see the Turbo
Decoder block reference page.

The LTE Turbo Decoder block expects input samples are interleaved with the parity bits.

Hardware-friendly input: S_1 P1_1 P2_1 S2 P1_2 P2_2 ... Sn P1_n P2_n

LTE Toolbox input: S_1 S_2 ... S_n P1_1 P1_2 ... P1_n P2_1 P2_2 ... P2_n

Reorder the samples using the interleave option of the whdlFramesToSamples function.

inframesize = size(inframes{1},1); %includes 4 tail bit samples
encoderrate = 3; % rate 1/3 Turbo code
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samplesizeIn = encoderrate; % 3 samples in at a time

idlecyclesbetweensamples = 0;
outframesize = size(txBits{1},1);
numTurboIterations = 6;
halfIterationLatency = (ceil(outframesize/32)+3)*32; % window size=32
algframedelay = 2*numTurboIterations*halfIterationLatency+(inframesize/samplesizeIn);
idlecyclesbetweenframes = algframedelay;

interleaveSamples = true;
[sampleIn,ctrlIn] = ...
    whdlFramesToSamples(inframes, ...
                          idlecyclesbetweensamples, ...
                          idlecyclesbetweenframes, ...
                          samplesizeIn, ...
                          interleaveSamples);

Run the Simulink model. The simulation time equals the number of input samples. Because of the
added idle cycles between frames, the streaming input data includes enough cycles for the model to
complete decoding of both frames.

sampletime = 1;
simTime = size(ctrlIn, 1);
modelname = 'ltehdlTurboDecoderModel';
open_system(modelname);
sim(modelname);

The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. De-serialize
the output samples, and compare to the decoded frame.

outframes = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE Turbo Decoder\n');
for ii = 1:numframes
    numBitsDiff = sum(outframes{ii} ~= rxBits{ii});
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,numBitsDiff);
end

Maximum frame size computed to be 6144 samples.

LTE Turbo Decoder
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  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE Turbo Decoder

Functions
lteTurboDecode

More About
• “Turbo Encode Streaming Samples” on page 3-6

3 Reference Page Examples

3-10



Convolutional Encode of Streaming Samples
This example shows how to use the LTE Convolutional Encoder block to encode data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

1 Generate frames of random input samples in MATLAB®.
2 Encode the data using the LTE Toolbox function lteConvolutionalEncode.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 To encode the samples using a hardware-friendly architecture, run the Simulink model, which

contains the Wireless HDL Toolbox™ block LTE Convolutional Encoder.
5 Export the stream of encoded bits to the MATLAB workspace.
6 Convert the sample stream back to framed data, and compare the frames with the reference

data.

Generate input data frames. Generate reference encoded data using lteConvolutionalEncode.

rng(0);
frameLength = 256;
numframes   = 2;

txframes     = cell(1,numframes);
txcodeword   = cell(1,numframes);
rxSoftframes = cell(1,numframes);

for k = 1:numframes
    txframes{k}   = randi([0 1],frameLength,1)>0.5;
    txcodeword{k} = lteConvolutionalEncode(txframes{k});
end

Serialize input data for the Simulink model. Leave enough time between frames so that each frame is
fully encoded before the next one starts. The block takes frameLength + 5 cycles to encode the
frame.

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames  = frameLength+5;

[sampleIn,ctrlIn] = whdlFramesToSamples(...
    txframes,idleCyclesBetweenSamples,idleCyclesBetweenFrames);

Run the Simulink model. Because of the added idle cycles between frames, the streaming input data
includes enough cycles for the model to complete encoding of both frames.

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrlIn,1);
modelname = 'ltehdlConvolutionalEncoderModel';
open_system(modelname);
sim(modelname);
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The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. Deserialize
the output samples, and compare them to the encoded frame.

The output samples of the LTE Convolutional Encoder block are the interleaved results of the three
polynomials.

• Hardware-friendly output: G0_1 G1_1 G2_1 G0_2 G1_2 G2_2 ... Gn G1_n G2_n
• LTE Toolbox output: G0_1 G0_2 ... G0_n G1_1 G1_2 ... G1_n G2_1 G2_2 ... G2_n

The whdlSamplesToFrames function provides an option to reorder the samples. Compare the
reordered output frames with the reference encoded frames.

interleaveSamples = true;
sampleOut = sampleOut';
txhdlframes = whdlSamplesToFrames(sampleOut(:),ctrlOut,[],interleaveSamples);

fprintf('\nLTE Convolutional Encoder\n');
for k = 1:numframes
    numBitsDiff = sum(double(txcodeword{k})-double(txhdlframes{k}));
    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],k,numBitsDiff);
end

Maximum frame size computed to be 768 samples.

LTE Convolutional Encoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE Convolutional Encoder

Functions
lteConvolutionalEncode

More About
• “Convolutional Decode of Streaming Samples” on page 3-13
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Convolutional Decode of Streaming Samples
This example shows how to use the LTE Convolutional Decoder block to decode data, and how to
compare the hardware-friendly design with the results from LTE Toolbox™. The workflow follows
these steps:

1 Generate LTE convolutionally encoded messages in MATLAB®, using LTE Toolbox.
2 Call Communications Toolbox™ functions to perform BPSK modulation, transmission through an

AWGN channel, and BPSK demodulation. The result is soft-bit values that represent log-
likelihood ratios (LLRs).

3 Quantize the soft bits according to the signal-to-noise ration (SNR).
4 Convert framed input data to a stream of samples and import the stream into Simulink®.
5 To decode the samples using a hardware-friendly architecture, execute the Simulink model,

which contains the LTE Convolutional Decoder block.
6 Export the stream of decoded bits to the MATLAB workspace.
7 Convert the sample stream back to framed data, and compare the frames with the original input

frames.

Calculate the channel SNR and create the modulator, channel, and demodulator System objects. EbNo
is the ratio of energy per uncoded bit to noise spectral density, in dB. EcNo is the ratio of energy per
channel bit to noise spectral density, in dB. The code rate of the convolutional encoder is 1/3.
Therefore each transmitted bit contains 1/3 of a bit of information.

EbNo = 10;
EcNo = EbNo - 10*log10(3);

modulator = comm.BPSKModulator;
channel = comm.AWGNChannel('EbNo',EcNo);
demodulator = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio');

Generate input data frames. Encode the data, modulate the message, and add channel effects to the
resulting constellation. Demodulate the transmitted constellation and generate soft-bit values. For the
hardware-friendly model, convert the soft bits into a fixed-point data type. The optimal soft-bit
quantization step size is a function of the noise spectral density, No.

rng(0);
messageLength = 100;
numframes = 2;
numSoftBits = 5;

txMessages     = cell(1,numframes);
rxSoftMessages = cell(1,numframes);

No            = 10^((-EcNo)/10);
quantStepSize = sqrt(No/2^numSoftBits);

for k = 1:numframes

    txMessages{k}  = randi([0 1],messageLength,1,'int8');
    txCodeword = lteConvolutionalEncode(txMessages{k});

    modOut   = modulator.step(txCodeword);
    chanOut  = channel.step(modOut);
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    demodOut = -demodulator.step(chanOut)/4;

    rxSoftMessagesDouble = demodOut./quantStepSize;
    rxSoftMessages{k} = fi(rxSoftMessagesDouble,1,numSoftBits,0);

end

Serialize input data for the Simulink model. Leave enough time between frames so that each frame is
fully decoded before the next one starts. The LTE Convolutional Decoder block takes (2 *
messageLength) + 140 cycles to complete decoding of a frame.

The LTE Convolutional Decoder block expects the input data to contain the three encoded bits
interleaved.

• Hardware-friendly input: G0_1 G1_1 G2_1 G0_2 G1_2 G2_2 ... G0_n G1_n G2_n
• LTE Toolbox input: G0_1 G0_2 ... G0_n G1_1 G1_2 ... G1_n G2_1 G2_2 ... G2_n

idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames  = 2 * messageLength + 140;
samplesizeIn             = 3;
interleaveSamples        = true;

[sampleIn,ctrlIn] = whdlFramesToSamples(rxSoftMessages,...
                    idleCyclesBetweenSamples,...
                    idleCyclesBetweenFrames,...
                    samplesizeIn,...
                    interleaveSamples);

Run the Simulink model. Because of the added idle cycles between frames, the streaming input
variables include enough cycles for the model to complete decoding of both frames.

sampletime= 1;
simTime = size(ctrlIn,1);
modelname = 'ltehdlConvolutionalDecoderModel';
open(modelname);
sim(modelname);

The Simulink model exports sampleOut and ctrlOut back to the MATLAB workspace. Deserialize
the output samples, and compare to the decoded frame.

rxMessages = whdlSamplesToFrames(sampleOut,ctrlOut);

fprintf('\nLTE Convolutional Decoder\n');
for k = 1:numframes
    numBitsDiff = sum(double(txMessages{k})-double(rxMessages{k}));
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    fprintf(['  Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'], k, numBitsDiff);
end

Maximum frame size computed to be 100 samples.

LTE Convolutional Decoder
  Frame 1: Behavioral and HDL simulation differ by 0 bits
  Frame 2: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
LTE Convolutional Decoder

Functions
lteConvolutionalDecode

More About
• “Convolutional Encode of Streaming Samples” on page 3-11
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Descrambling with Gold Sequence Generator
This example shows how to use the LTE Gold Sequence Generator block to implement an LTE
descrambler.

The example model generates random I-Q pairs, multiplies the I and Q components with a generated
Gold sequence, and interleaves the I and Q into a single data stream.

You can generate HDL from the HDL Descrambler subsystem.

The LTE Gold Sequence Generator block has no block parameters. It is configured to match the
polynomial and shift length required by LTE standard TS 36.212. You must initialize the sequence
with a 31-bit value on the init port, and load the value into the block by setting the load signal to 1
for one cycle. The enable signal generates the Gold sequence values. The output valid signal
indicates when the output is available.

You can add data logging on the signals and use the Logic Analyzer to view the waveforms.
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To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('ltehdlGoldDescramblerModel/HDL Descrambler')

To generate a test bench, use the following command:

makehdltb('ltehdlGoldDescramblerModel/HDL Descrambler')

See Also
Blocks
LTE Gold Sequence Generator
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Parallel Gold Sequence Generation
This example shows how to use the LTE Gold Sequence Generator block to generate multiple
sequences in parallel for use in channel estimation.

The example model initializes the LTE Gold Sequence Generator block with a vector that represents
the init values for each of four channels. The block returns four independent Gold sequences.

You can generate HDL from the HDL Gold Sequence Generator subsystem.

The LTE Gold Sequence Generator block has no block parameters. It is configured to match the
polynomial and shift length required by LTE standard TS 36.212. You must initialize the sequence
with a 31-bit value on the init port, and load the value into the block by setting the load signal to 1
for one cycle. This model has four init values, representing four channels.

The enable signal generates the Gold sequence values. The output is a vector of four values. The
output valid signal indicates when the output data is available.

You can add data logging on the signals and use the Logic Analyzer to view the waveforms.
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To generate and check the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, use the following command:

makehdl('ltehdlGoldVectorModel/HDL Gold Sequence Generator')

To generate a test bench, use the following command:

makehdltb('ltehdlGoldVectorModel/HDL Gold Sequence Generator')

See Also
Blocks
LTE Gold Sequence Generator
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LTE OFDM Demodulation of Streaming Samples
This example shows how to use the LTE OFDM Demodulator block to return the LTE resource grid
from streaming samples. You can generate HDL code from this block.

Generate input LTE OFDM symbols using LTE Toolbox™. Select a reference channel based on
NDLRB, and specify the type of cyclic prefix.

enb = lteRMCDL('R.5');
enb.TotSubframes = 1;
enb.CyclicPrefix = 'Normal';  % or 'Extended'
% ------------------------------------------------------------
%      NDLRB  |   Reference Channel
% ------------------------------------------------------------
%   6         |   R.4
%   15        |   R.5
%   25        |   R.6
%   50        |   R.7
%   75        |   R.8
%   100       |   R.9
% ------------------------------------------------------------

[waveform,LTEGrid,info] = lteRMCDLTool(enb,[1;0;0;1]);
%%In this example, the Input data sample rate parameter is set to |Use
% maximum input data sample rate|. Hence, the LTE OFDM Demodulator block
% expects input samples at 30.72 MHz sample rate to correspond to the
% size of the FFT. The sample rate of |waveform| depends on NDLRB,
% so the generated waveform might be at a lower rate. To generate
% a test waveform, upsample the signal to 30.72 MHz, normalize the power,
% and add noise. Scale the signal magnitude to be in the range -1 to 1 for
% easy conversion to fixed-point types.

FsRx = 30.72e6;
FsTx = info.SamplingRate;
% --------------------------------------------------------------
%      NDLRB              |   Sampling Rate (MHz)
%   ------------------------------------------------------------
%   1) 6                  |   1.92
%   2) 15                 |   3.84
%   3) 25                 |   7.68
%   4) 50                 |   15.36
%   5) 75                 |   30.72
%   6) 100                |   30.72
%   ------------------------------------------------------------

tx = resample(waveform,FsRx,FsTx);
avgTxPower =  (tx' * tx) / length(tx);
tx = tx / sqrt(avgTxPower);
n = 0.1 * complex(randn(length(tx),1),randn(length(tx),1));
rx = tx + n;
rx = 0.99 * rx / max(abs(rx));

Use an LTE Toolbox function as a behavioral reference for the OFDM demodulation. Downsample the
test waveform to the actual sample rate for the selected NDLRB. Then, compensate for the scale
factor that results from the difference in FFT sizes.
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refInput = resample(rx,FsTx,FsRx);
refGrid = lteOFDMDemodulate(info,refInput);
refGrid = refGrid * FsRx/FsTx;

Set up the Simulink™ model input data. Convert the test waveform to a fixed-point data type to model
the result from a 12-bit ADC. The Simulink sample time is 30.72 MHz.

The Simulink model imports the sample stream dataIn and validIn, the input parameters NDLRB
and cyclicPrefixType, and the variable stopTime.

NDLRB = info.NDLRB;
if strcmp(info.CyclicPrefix,'Normal')
    cyclicPrefixType = false;
else
    cyclicPrefixType = true;
end

sampling_time = 1/FsRx;
dataIn = fi(rx,1,12,11);
validIn = true(length(dataIn),1);

Calculate the Simulink simulation time, accounting for the latency of the LTE OFDM Demodulator
block. The latency of the FFT is fixed because the block uses a 2048-point FFT. Assume the maximum
possible latency of the cyclic prefix removal and subcarrier selection operations. The simulation must
run long enough to apply the input data, plus the latency of the final input symbol.

FFTlatency = 4137;
CPRemove_max = 512; % extended CP
carrierSelect_max = 424; % NDRLB 100
stopTime = sampling_time*(length(dataIn)+CPRemove_max+FFTlatency+carrierSelect_max);

Run the Simulink model. The model imports the dataIn and validIn structures and returns
dataOut and validOut.

modelname = 'LTEOFDMDemodulatorExample';
open(modelname)
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
sim(modelname)

Compare the output of the Simulink model against the behavioral results, and calculate the SQNR of
the HDL-optimized LTE OFDM Demodulator block.

rxgridSimulink = dataOut(validOut);

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1)
plot(real(refGrid(:)))
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hold on
plot(squeeze(real(rxgridSimulink)))
legend('Real part of behavioral waveform','Real part of HDL-optimized waveform')
title('Comparison of LTE Time-Domain Downlink Waveform')
xlabel('OFDM Subcarriers')
ylabel('Real Part of Time-Domain Waveform')

subplot(2,1,2)
plot(imag(refGrid(:)))
hold on
plot(squeeze(imag(rxgridSimulink)))
legend('Imag part of behavioral waveform','Imag part of HDL-optimized waveform')
title('Comparison of LTE Time-Domain Downlink Waveform')
xlabel('OFDM Subcarriers')
ylabel('Imag Part of Time-Domain Waveform')

sqnrRealdB = 10*log10(var(real(rxgridSimulink))/abs(var(real(rxgridSimulink))-var(real(refGrid(:)))));
sqnrImagdB = 10*log10(var(imag(rxgridSimulink))/abs(var(imag(rxgridSimulink))-var(imag(refGrid(:)))));

fprintf('\n LTE OFDM Demodulator: \n SQNR of real part is %.2f dB',sqnrRealdB)
fprintf('\n SQNR of imaginary part is %.2f dB\n',sqnrImagdB)

 LTE OFDM Demodulator: 
 SQNR of real part is 25.98 dB
 SQNR of imaginary part is 23.23 dB
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See Also
Blocks
LTE OFDM Demodulator
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Reset and Restart LTE OFDM Demodulation
This example shows how to recover the LTE OFDM Demodulator block from an unfinished LTE cell.
The input data is truncated to simulate the loss of a signal or a reset from the upstream parts of the
receiver. The example model uses the reset signal to clear the internal state counters of the LTE
OFDM Demodulator block and then restart calculations on the next cell. In this example, the Input
data sample rate parameter of LTE OFDM Demodulator is set to Use maximum input data sample
rate. So, the base sampling rate of the block is 30.72 MHz.

Generate two input LTE OFDM cells that use different NDLRBs or different types of cyclic prefix.
Upsample both waveforms to the base sampling rate of 30.72 MHz.

% ------------------------------------------------------------
%      NDLRB  |   Reference Channel
% ------------------------------------------------------------
%   6         |   R.4
%   15        |   R.5
%   25        |   R.6
%   50        |   R.7
%   75        |   R.8
%   100       |   R.9
% ------------------------------------------------------------

enb1 = lteRMCDL('R.9');
enb1.TotSubframes = 1;
enb1.CyclicPrefix = 'Normal';  % or 'Extended'
[waveform1,grid1,info1] = lteRMCDLTool(enb1,[1;0;0;1]);

enb2 = lteRMCDL('R.6');
enb2.TotSubframes = 1;
enb2.CyclicPrefix = 'Normal';  % or 'Extended'
[waveform2,grid2,info2] = lteRMCDLTool(enb2,[1;0;0;1]);

FsRx = 30.72e6;
tx1 = resample(waveform1,FsRx,info1.SamplingRate);
tx2 = resample(waveform2,FsRx,info2.SamplingRate);

Truncate the first waveform two-thirds through the cell. Concatenate the shortened cell with the
second generated cell, leaving some invalid samples in between. Add noise, and scale the signal
magnitude to be in the range [-1, 1] for easy conversion to fixed point.

tx1 = tx1(1:2*length(tx1)/3);

Lgap1 = 3000;
Lgap2 = 10000;
rx = [zeros(Lgap1,1); tx1; zeros(Lgap2,1); tx2];

L = length(rx);
rx = rx + 2e-4*complex(randn(L,1),randn(L,1));

dataIn_fp = 0.99*rx/max(abs(rx));

The LTE OFDM Demodulator block maintains internal counters of subframes within each cell. The
block requires a reset after an incomplete cell to clear the counters before it can correctly
demodulate subsequent cells. Create a reset pulse signal at the end of the first waveform.
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resetIndex = Lgap1 + length(tx1);
resetIn = false(length(rx),1);
resetIn(resetIndex) = true;

Set up the Simulink™ model input data. Convert the test waveform to a fixed-point data type to model
the result from a 12-bit ADC. The Simulink sample time is 30.72 MHz.

The Simulink model imports the sample stream dataIn and validIn, the input parameters NDLRB
and cyclicPrefixType, the reset signal resetIn, and the simulation length stopTime.

dataIn = fi(dataIn_fp,1,12,11);

validIn = [false(Lgap1,1); true(length(tx1),1); false(Lgap2,1); true(length(tx2),1)];
validIn(resetIndex+1:Lgap1+length(tx1)) = false;

NDLRB = uint16([info1.NDLRB*ones(Lgap1 + length(tx1),1); info2.NDLRB*ones(Lgap2 + length(tx2),1)]);

cpType1 = strcmp(info1.CyclicPrefix,'Extended');
cpType2 = strcmp(info2.CyclicPrefix,'Extended');
cyclicPrefixType = [repmat(cpType1,Lgap1 + length(tx1),1); repmat(cpType2,Lgap2 + length(tx2),1)];

Calculate the Simulink simulation time, accounting for the latency of the LTE OFDM Demodulator
block. The latency of the FFT is fixed because the block uses a 2048-point FFT. Assume the maximum
possible latency of the cyclic prefix removal and the subcarrier selection operations.

FFTlatency = 4137;
CPRemove_max = 512; % extended CP
carrierSelect_max = 424; % NDRLB 100

sampling_time = 1/FsRx;
stopTime = sampling_time*(length(dataIn) + CPRemove_max + FFTlatency + carrierSelect_max);

Run the Simulink model. The model imports the dataIn and validIn structures and returns
dataOut and validOut.

modelname = 'LTEOFDMDemodResetExample';
open(modelname)
set_param(modelname,'SampleTimeColors','on');
set_param(modelname,'SimulationCommand','Update');
sim(modelname)

Split dataOut and validOut into two parts as divided by the reset pulse. The block applies the reset
to the output data one cycle after the reset is applied on the input. Use the validOut signal to
collect the valid output samples.

dataOut1 = dataOut(1:resetIndex);
dataOut2 = dataOut(resetIndex+1:end);
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validOut1 = validOut(1:resetIndex);
validOut2 = validOut(resetIndex+1:end);

demodData1 = dataOut1(validOut1);
demodData2 = dataOut2(validOut2);

Generate reference data by flattening and normalizing the unmodulated resource grid data. Truncate
the first cell in the same way as the modulated input data. Apply complex scaling to each
demodulated sequence so that it can be compared to its corresponding reference data.

refData1 = grid1(:);
refData1 = refData1(1:length(demodData1));
refData2 = grid2(:);

refData1 = refData1/norm(refData1);
refData2 = refData2/norm(refData2);

demodData1 = demodData1/(refData1'*demodData1);
demodData2 = demodData2/(refData2'*demodData2);

Compare the output of the Simulink model against the truncated input grid, and display the results.

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,2,1)
plot(real(refData1(:)))
hold on
plot(squeeze(real(demodData1)))
legend('Input grid','Demodulated output')
title(sprintf('Cell 1 (NDLRB %d) - Real part', info1.NDLRB))
xlabel('OFDM Subcarriers')

subplot(2,2,2)
plot(imag(refData1(:)))
hold on
plot(squeeze(imag(demodData1)))
legend('Input grid','Demodulated output')
title(sprintf('Cell 1 (NDLRB %d) - Imaginary part', info1.NDLRB))
xlabel('OFDM Subcarriers')

subplot(2,2,3)
plot(real(refData2(:)))
hold on
plot(squeeze(real(demodData2)))
legend('Input grid','Demodulated output')
title(sprintf('Cell 2 (NDLRB %d) - Real part', info2.NDLRB))
xlabel('OFDM Subcarriers')

subplot(2,2,4)
plot(imag(refData2(:)))
hold on
plot(squeeze(imag(demodData2)))
legend('Input grid','Demodulated output')
title(sprintf('Cell 2 (NDLRB %d) - Imaginary part', info2.NDLRB))
xlabel('OFDM Subcarriers')

sqnrRealdB1 = 10*log10(var(real(demodData1))/abs(var(real(demodData1)) - var(real(refData1(:)))));
sqnrImagdB1 = 10*log10(var(imag(demodData1))/abs(var(imag(demodData1)) - var(imag(refData1(:)))));
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fprintf('\n Cell 1: SQNR of real part is %.2f dB',sqnrRealdB1)
fprintf('\n Cell 1: SQNR of imaginary part is %.2f dB\n',sqnrImagdB1)

sqnrRealdB2 = 10*log10(var(real(demodData2))/abs(var(real(demodData2)) - var(real(refData2(:)))));
sqnrImagdB2 = 10*log10(var(imag(demodData2))/abs(var(imag(demodData2)) - var(imag(refData2(:)))));

fprintf('\n Cell 2: SQNR of real part is %.2f dB',sqnrRealdB2)
fprintf('\n Cell 2: SQNR of imaginary part is %.2f dB\n',sqnrImagdB2)

 Cell 1: SQNR of real part is 33.71 dB
 Cell 1: SQNR of imaginary part is 52.26 dB

 Cell 2: SQNR of real part is 32.41 dB
 Cell 2: SQNR of imaginary part is 36.72 dB

See Also
Blocks
LTE OFDM Demodulator
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Modulate and Demodulate LTE Resource Grid
This example shows how to modulate and then demodulate LTE resource grid samples. The model
connects the LTE OFDM Modulator block to the LTE OFDM Demodulator block. To verify the
algorithms of both blocks, this example compares the output of the demodulator with the input of the
modulator. You can generate HDL code from either block.

Generate the input resource grid using LTE Toolbox™.

enb = lteRMCDL('R.6');
enb.CyclicPrefix='Normal';
enb.TotSubframes = 1;

% --------------------------------------------------------------
%      NDLRB              |   Sampling Rate (MHz)
% --------------------------------------------------------------
%       6                  |   R.4
%       15                 |   R.5
%       25                 |   R.6
%       50                 |   R.7
%       75                 |   R.8
%       100                |   R.9
% --------------------------------------------------------------

[~,LTEGrid,info] = lteRMCDLTool(enb,[1;0;0;1]);

NDLRB=info.NDLRB;
if strcmp(enb.CyclicPrefix,'Normal')
    CPType=false;
else
    CPType=true;
end

sampling_time=1/30.72e6;
modulatorLatency=4137+2048*2;
demodulatorLatency=4137+2048*2;
stoptime=enb.TotSubframes*(30720+modulatorLatency+demodulatorLatency)*sampling_time;

Convert the LTEGrid sample frames to a stream of samples with control signals for input to the
Simulink® model.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;

[dataIn,ctrl] = whdlFramesToSamples(mat2cell(LTEGrid(:),numel(LTEGrid),1),...
                idlecyclesbetweensamples,idlecyclesbetweenframes);
validIn = logical(ctrl(:,3));

Run the Simulink model to modulate and demodulate the samples, and save the output samples to a
workspace variable.

open_system('LTEHDLOFDMModDemodExample')
sim('LTEHDLOFDMModDemodExample');

rxgridSimulink = dataOut(validOut);
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Compare the input of the modulator, generated from the lteRMCDLTool function, and the output of
the demodulator from the model.

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1);
plot(real(LTEGrid(:)));
hold on
plot(squeeze(real(rxgridSimulink)));
legend('Real part of LTE grid','Real part of demodulated waveform');
title('Comparision of Input to OFDM Modulator with Output from OFDM Demodulator');
xlabel('OFDM Subcarriers');
ylabel('Real part of the time-domain waveform');

subplot(2,1,2)
plot(imag(LTEGrid(:)))
hold on
plot(squeeze(imag(rxgridSimulink)))
legend('Imag part of LTE grid','Imag part of demodulated waveform');
title('Comparision of Input to OFDM Modulator with Output from OFDM Demodulator');
xlabel('OFDM Subcarriers');
ylabel('Imag part of the time-domain waveform');
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See Also
Blocks
LTE OFDM Demodulator | LTE OFDM Modulator
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OFDM Modulation of LTE Resource Grid Samples
This example shows how to use the LTE OFDM Modulator block to modulate LTE resource grid
samples to an equivalent time-domain signal output. You can generate HDL code from this block.

Generate the input resource grid using LTE Toolbox™.

enb = lteRMCDL('R.6');
enb.CyclicPrefix='Normal';
enb.TotSubframes = 1;
% --------------------------------------------------------------
%      NDLRB              |   Sampling Rate (MHz)
% --------------------------------------------------------------
%       6                  |   R.4
%       15                 |   R.5
%       25                 |   R.6
%       50                 |   R.7
%       75                 |   R.8
%       100                |   R.9
% --------------------------------------------------------------

[~,LTEGrid,info] = lteRMCDLTool(enb,[1;0;0;1]);
[eNodeBOutput,~] = lteOFDMModulate(enb,LTEGrid);

Convert the LTEGrid sample frames to a stream of samples with control signals for input to the
Simulink® model.

NDLRB=info.NDLRB;
if strcmp(enb.CyclicPrefix,'Normal')
    CPType=false;
else
    CPType=true;
end

sampling_time=1/30.72e6;
stoptime=enb.TotSubframes*(30720+4137+2048*2)*sampling_time;

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;

[dataIn,ctrl] = whdlFramesToSamples(mat2cell(LTEGrid(:),numel(LTEGrid),1),...
    idlecyclesbetweensamples,idlecyclesbetweenframes);
validIn = logical(ctrl(:,3));

Run the Simulink model.

modelname = 'OFDMModulatorModelExample';
open_system(modelname);
sim(modelname);
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Save the output of the Simulink model and then compare the output of the model against the output
of the lteOFDMModulate function.

rxgridSimulink=dataOut(validOut);

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1);
plot(real(eNodeBOutput));
hold on
plot(squeeze(real(rxgridSimulink)));
legend('Real part of behavioral waveform','Real part of HDL-optimized waveform');
title('Comparison of LTE Time-Domain Downlink Waveforms from Behavioral and HDL-Optimized Algorithms');
xlabel('OFDM subcarriers');
ylabel('Real part of the time-domain waveform');

subplot(2,1,2)
plot(imag(eNodeBOutput))
hold on
plot(squeeze(imag(rxgridSimulink)))
legend('Imag part of behavioral waveform','Imag part of HDL-optimized waveform');
title('Comparison of LTE Time-Domain Downlink Waveforms from Behavioral and HDL-Optimized Algorithms');
xlabel('OFDM subcarriers');
ylabel('Imag part of the time-domain waveform');
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See Also
Blocks
LTE OFDM Modulator
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Depuncture and Decode Streaming Samples
This example shows how to use the hardware-friendly Depuncturer block and Viterbi Decoder block
to decode samples encoded at WLAN code rates.

Generate input samples in MATLAB® by encoding random data, BPSK-modulating the samples,
applying a channel model, demodulating the samples, and creating received soft-decision bits. Then,
import the soft-decision bits into a Simulink® model to depuncture and decode the samples. Export
the result of the Simulink simulation back to MATLAB and compare it against the original input
samples.

The example model supports HDL code generation for the HDL Depuncture and Decode subsystem.

modelname  = 'ltehdlViterbiDecoderModel';
open_system(modelname);

Set Up Code Rate Parameters

Set up workspace variables that describe the code rate. The Viterbi Decoder block supports
constraint lengths in the range [3,9] and polynomial lengths in the range [2,7].

Choose a traceback depth in the range [3,128]. For non-punctured samples, the recommended depth
is 5 times the constraintLength. For punctured samples, the recommended depth is 10 times the
constraintLength.

Starting from a code rate of 1/2, IEEE 802.11 WLAN specifies three puncturing patterns to generate
three additional code rates. Choose one of these code rates, and then set the frame size and
puncturing pattern based on that rate. You can also choose the unpunctured code rate of 1/2.

IEEE 802.11 WLAN specifies different modulation types for different code rates and uses
'Terminated' mode. This example uses BPSK modulation for all rates and can run with
'Terminated' or 'Truncated' operation mode. The blocks also support 'Continuous' mode, but
it is not included in this example.

constraintLength = 7;
codeGenerator = [133 171];
opMode = 'Terminated';
tracebackDepth = 10*constraintLength;

trellis = poly2trellis(constraintLength,...
    codeGenerator);
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% IEEE 802.11n-2009 WLAN 1/2 (7, [133 171])
% Rate   Puncture Pattern     Maximum Frame Size
% 1/2     [1;1;1;1]                 2592
% 2/3     [1;1;1;0]                 1728
% 3/4     [1;1;1;0;0;1]             1944
% 5/6     [1;1;1;0;0;1;1;0;0;1]     2160
codeRate = 3/4;

if (codeRate == 2/3)
    puncVector = logical([1;1;1;0]);
    frameSize = 1728;
elseif (codeRate == 3/4)
    puncVector = logical([1;1;1;0;0;1]);
    frameSize = 1944;
elseif (codeRate == 5/6)
    puncVector = logical([1;1;1;0;0;1;1;0;0;1]);
    frameSize = 2160;
else % codeRate == 1/2
    puncVector = logical([1;1;1;1]);
    frameSize = 2592;
end

if strcmpi(opMode,'Terminated')
    % Terminate the state at the end of the frame
    tailLen = constraintLength-1;
else
    % Truncated mode
    tailLen = 0;
end

Generate Samples for Decoding

Use Communications Toolbox™ functions and System objects to generate encoded samples and apply
channel noise. Demodulate the received samples, and create soft-decision values for each sample.

EbNo = 10;
EcNo = EbNo - 10*log10(numel(codeGenerator));

numFrames = 5;
numSoftBits = 4;

txMessages = cell(1,numFrames);
rxSoftMessages = cell(1,numFrames);

No = 10^((-EcNo)/10);
quantStepSize = sqrt(No/2^numSoftBits);

modulator = comm.BPSKModulator;
channel = comm.AWGNChannel('EbNo',EcNo);
demodulator = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio');

for ii = 1:numFrames
    txMessages{ii} = [randn(frameSize - tailLen,1)
        zeros(tailLen,1)]>0;
    % Convolutional encoding and puncturing
    txCodeword = convenc(txMessages{ii},trellis,puncVector);
    % Modulation
    modOut = modulator.step(txCodeword);
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    % Channel
    chanOut = channel.step(modOut);
    % Demodulation
    demodOut = -demodulator.step(chanOut)/4;
    % Convert to soft-decision values
    rxSoftMessagesDouble = demodOut./quantStepSize;
    rxSoftMessages{ii} = fi(rxSoftMessagesDouble,1,numSoftBits,0);
end

Set Up Variables for Simulink Simulation

The Simulink model requires streaming samples with accompanying control signals. Use the
whdlFramesToSamples function to convert the framed rxSoftMessages to streaming samples and
generate the matching control signals.

Calculate the required simulation time from the latency of the depuncture and decoder blocks.

samplesizeIn = 1;
idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = 0;
if strcmpi(opMode,'Truncated')
    % Truncated mode requires a gap between frames of at least constraintLength-1
    idlecyclesbetweenframes = constraintLength - 1;
end

[sampleIn,ctrlIn] = whdlFramesToSamples(rxSoftMessages, ...
    idlecyclesbetweensamples,idlecyclesbetweenframes,samplesizeIn);

depunLatency = 6;
vitLatency = 4*tracebackDepth + constraintLength + 13;
latency = vitLatency + depunLatency;

simTime = size(ctrlIn,1) + latency;
sampletime = 1;

Run the Simulink Model

Call the Simulink model to depuncture and decode the samples. The model exports the decoded
samples to the MATLAB workspace. The Depuncture and Viterbi Decoder block parameters are
configured using workspace variables. Because Operation mode is a list parameter, use set_param
to assign the workspace value.

Convert the streaming samples back to framed data for comparison.

set_param([modelname '/HDL Depuncture and Decode'],'Open','on');
set_param([modelname '/HDL Depuncture and Decode/Viterbi Decoder'],...
          'TerminationMethod',opMode);
sim(modelname);

sampleOut = squeeze(sampleOutTS.Data);
ctrlOut = [squeeze(ctrlOutTS.start.Data) ...
    squeeze(ctrlOutTS.end.Data) ...
    squeeze(ctrlOutTS.valid.Data)];
rxMessages = whdlSamplesToFrames(sampleOut,ctrlOut);

Maximum frame size computed to be 1944 samples.
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Verify Results

Compare the output samples against the generated input samples.

fprintf('\nDecoded Samples\n');
for ii = 1:numFrames
    numBitsErr = sum(xor(txMessages{ii},rxMessages{ii}));
    fprintf('Frame #%d: %d bits mismatch \n',ii,numBitsErr);
end

Decoded Samples
Frame #1: 0 bits mismatch 
Frame #2: 0 bits mismatch 
Frame #3: 0 bits mismatch 
Frame #4: 0 bits mismatch 
Frame #5: 0 bits mismatch 

See Also
Blocks
Depuncturer | Viterbi Decoder
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LTE Symbol Modulation of Data Bits
This example shows how to use the LTE Symbol Modulator block to modulate data bits to complex
data symbols. You can generate HDL code from this block.

Set up input data parameters. Choose a data length for each modulation type. The data length must
be an integer multiple of number of bits per symbol.

rng(0);
framesize = 240;

% Map modulation names to values
% 0 - BPSK
% 1 - QPSK
% 2 - 16-QAM
% 3 - 64-QAM
% 4 - 256-QAM
% others - QPSK

% For LTE Symbol Modulator Simulink block
modSelVal = [0;1;2;3;4];

% For |lteSymbolModulate| function
modSelStr = {'BPSK','QPSK','16QAM','64QAM','256QAM'};

outWordLength = 16;
numframes = length(modSelVal);
dataBits  = cell(1,numframes);
modSelTmp = cell(1,numframes);
lteFcnOutput = cell(1,numframes);

Generate frames of random input samples.

for ii = 1:numframes
    dataBits{ii} = logical(randi([0 1],framesize,1));
    modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the LTE Symbol
Modulator Simulink block.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;
[sampleIn, ctrl] = whdlFramesToSamples(dataBits,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
load = logical(ctrl(:,1)');
validIn = logical(ctrl(:,3)');

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrl,1);

Run the Simulink model.
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modelname = 'ltehdlSymbolModulatorModel';
open_system(modelname);
sim(modelname);

Export the stream of modulated samples from Simulink to the MATLAB workspace.

sampleOut = squeeze(sampleOut).';
lteHDLOutput = sampleOut(squeeze(validOut));

Modulate data bits with lteSymbolModulate function and use its output as a reference data.

for ii = 1:numframes
    lteFcnOutput{ii} = lteSymbolModulate(dataBits{ii},modSelStr{ii}).';
end

Compare the output of the Simulink model against the output of lteSymbolModulate function.

fprintf('\nLTE Symbol Modulator\n');
lteFcnOutput = fi(cell2mat(lteFcnOutput),1,outWordLength,outWordLength-2);
difference = sum(abs(lteHDLOutput-lteFcnOutput(1:length(lteHDLOutput))));
fprintf('\nTotal number of samples differed between Simulink block output and Reference data output: %d \n',difference);

LTE Symbol Modulator

Total number of samples differed between Simulink block output and Reference data output: 0 

See Also
Blocks
LTE Symbol Modulator
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NR Symbol Modulation of Data Bits
This example shows how to use the NR Symbol Modulator block to modulate data bits to complex
data symbols. You can generate HDL code from this block.

Set up input data parameters. Choose a data length for each modulation type. The data length must
be an integer multiple of number of bits per symbol.

rng(0);
framesize = 240;

% Map modulation names to values
% 0 - BPSK
% 1 - QPSK
% 2 - 16-QAM
% 3 - 64-QAM
% 4 - 256-QAM
% 5 - pi/2-BPSK
% others - QPSK

% for NR Symbol Modulator Simulink block
modSelVal = [0;1;2;3;4;5];

% for nrSymbolModulate function
modSelStr = {'BPSK','QPSK','16QAM','64QAM','256QAM','pi/2-BPSk'};

outWordLength = 16;
numframes = length(modSelVal);
dataBits  = cell(1,numframes);
modSelTmp = cell(1,numframes);
nrFcnOutput = cell(1,numframes);

Generate frames of random input samples.

for ii = 1:numframes
    dataBits{ii} = logical(randi([0 1],framesize,1));
    modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);

end

Convert the framed input data to a stream of samples and input the stream to the Simulink block.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;
[sampleIn, ctrl] = whdlFramesToSamples(dataBits,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
load = logical(ctrl(:,1)');
validIn = logical(ctrl(:,3)');

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrl,1);

Run the Simulink model.
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modelname = 'nrhdlSymbolModulatorModel';
open_system(modelname);
sim(modelname);

Export the stream of modulated samples from Simulink to the MATLAB workspace.

sampleOut = squeeze(sampleOut).';
nrHDLOutput = sampleOut(squeeze(validOut));

Modulate frame data bits with nrSymbolModulate function and use the output of this function as a
reference data.

for ii = 1:numframes
    nrFcnOutput{ii} = nrSymbolModulate(dataBits{ii},modSelStr{ii}).';
end

Compare the output of the Simulink model against the output of nrSymbolModulate function.

fprintf('\nNR Symbol Modulator\n');
nrFcnOutput = fi(cell2mat(nrFcnOutput),1,outWordLength,outWordLength-2);
error = sum(abs(nrHDLOutput-nrFcnOutput(1:length(nrHDLOutput))));
fprintf('\nTotal number of samples differed between Behavioral and HDL simulation: %d \n',error);

NR Symbol Modulator

Total number of samples differed between Behavioral and HDL simulation: 0 

See Also
Blocks
NR Symbol Modulator
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LTE Symbol Demodulation of Complex Data Symbols
This example shows how to use the LTE Symbol Demodulator block to demodulate complex LTE data
symbols to data bits or LLR values. The workflow follows these steps:

1 Set up input data parameters.
2 Generate frames of random input samples.
3 Convert framed input data to a stream of samples and import the stream into Simulink®.
4 Run the Simulink® model, which contains the LTE Symbol Demodulator block.
5 Export the stream of demodulated samples from Simulink to the MATLAB® workspace.
6 Demodulate data symbols with lteSymbolDemodulate function to use its output as a reference

data.
7 Compare Simulink block output data with the reference MATLAB function output.

Set up input data parameters.

Map modulation names to values. The numerical values are used to set up the LTE Symbol
Demodulator block. The strings are used to configure the lteSymbolDemodulator function.

rng(0);
framesize = 10;

% 0 - BPSK
% 1 - QPSK
% 2 - 16-QAM
% 3 - 64-QAM
% 4 - 256-QAM
% others - QPSK
modSelVal = [0;1;2;3;4];
modSelStr = {'BPSK','QPSK','16QAM','64QAM','256QAM'};

decType = 'Soft';

numframes = length(modSelVal);
dataSymbols  = cell(1,numframes);
modSelTmp = cell(1,numframes);
lteFcnOutput = cell(1,numframes);

Generate frames of random input samples.

for ii = 1:numframes
    dataSymbols{ii} = complex(randn(framesize,1),randn(framesize,1));
    modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);
end

Convert the framed input data to a stream of samples and input the stream to the LTE Symbol
Demodulator Simulink block.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;
[sampleIn, ctrl] = whdlFramesToSamples(dataSymbols,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
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validIn = logical(ctrl(:,3)');

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrl,1)*8;

Run the Simulink model.

modelname = 'ltehdlSymbolDemodulatorModel';
open_system(modelname);
set_param([modelname '/Demod/LTE Symbol Demodulator'],'DecisionType',decType)
sim(modelname);

Export the stream of demodulated samples from Simulink to the MATLAB workspace.

lteHDLOutput = sampleOut(validOut).';

Demodulate data symbols with lteSymbolDemodulate function and use its output as a reference
data.

for ii = 1:numframes
 lteFcnOutput{ii} = lteSymbolDemodulate(dataSymbols{ii},modSelStr{ii},decType).';
end

Compare the output of the Simulink model against the output of lteSymbolDemodulate function.

lteFcnOutput = double(cell2mat(lteFcnOutput));

figure(1)
stem(lteHDLOutput,'b')
hold on
stem(lteFcnOutput,'--r')
grid on
legend('Reference','Simulink')
xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink block and MATLAB function')
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See Also
Blocks
LTE Symbol Demodulator
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NR Symbol Demodulation of Complex Data Symbols
This example shows how to use the NR Symbol Demodulator block to demodulate complex NR data
symbols to data bits or LLR values. The workflow follows these steps:

1 Set up input data parameters.
2 Generate frames of random input samples.
3 Convert framed input data to a stream of samples and import the stream into Simulink.
4 Run the Simulink® model, which contains the NR Symbol Demodulator block.
5 Export the stream of demodulated samples from Simulink to the MATLAB® workspace.
6 Demodulate data symbols with nrSymbolDemodulate function to use its output as a reference

data.
7 Compare Simulink block output data with the reference MATLAB function output.

Set up input data parameters.

Map modulation names to values. The numerical values are used to set up the NR Symbol
Demodulator block. The strings are used to configure the nrSymbolDemodulator function.

rng(0);
framesize = 10;

% 0 - BPSK
% 1 - QPSK
% 2 - 16-QAM
% 3 - 64-QAM
% 4 - 256-QAM
% 5 - pi/2-BPSK
% others - QPSK
modSelVal = [0;1;2;3;4;5];
modSelStr = {'BPSK','QPSK','16QAM','64QAM','256QAM','pi/2-BPSK'};

decType = 'Soft';

numframes = length(modSelVal);
dataSymbols  = cell(1,numframes);
modSelTmp = cell(1,numframes);
nrFcnOutput = cell(1,numframes);

Generate frames of random input samples.

for ii = 1:numframes
    dataSymbols{ii} = complex(randn(framesize,1),randn(framesize,1));
    modSelTmp{ii} = fi(modSelVal(ii)*ones(framesize,1),0,3,0);
end

Convert the framed input data to a stream of samples and input the stream to the NR Symbol
Demodulator Simulink block.

idlecyclesbetweensamples = 0;
idlecyclesbetweenframes  = 0;
[sampleIn, ctrl] = whdlFramesToSamples(dataSymbols,idlecyclesbetweensamples,...
    idlecyclesbetweenframes);
[modSel, ~] = whdlFramesToSamples(modSelTmp,idlecyclesbetweensamples,...
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    idlecyclesbetweenframes);
validIn = logical(ctrl(:,3)');

sampletime = 1;
samplesizeIn = 1;
simTime = size(ctrl,1)*8;

Run the Simulink model.

modelname = 'nrhdlSymbolDemodulatorModel';
open_system(modelname);
set_param([modelname '/NRDemod/NR Symbol Demodulator'],'DecisionType',decType)
sim(modelname);

Export the stream of demodulated samples from Simulink to the MATLAB workspace.

nrHDLOutput = sampleOut(validOut).';

Demodulate data symbols with nrSymbolDemodulate function and use its output as a reference
data.

for ii = 1:numframes
 nrFcnOutput{ii} = nrSymbolDemodulate(dataSymbols{ii},modSelStr{ii},'DecisionType',decType,1).';
end

Compare the output of the Simulink model against the output of nrSymbolDemodulate function.

nrFcnOutput = double(cell2mat(nrFcnOutput));

figure(1)
stem(nrHDLOutput,'b')
hold on
stem(nrFcnOutput,'--r')
grid on
legend('Reference','Simulink')
xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink block and MATLAB function')
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See Also
Blocks
NR Symbol Demodulator
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Application of FFT 1536 block in LTE OFDM Demodulation
This example shows how to use the FFT 1536 block in LTE OFDM demodulation.

1 Generate transmitter waveform.
2 Remove cyclic prefix.
3 Prepare inputs for FFT 1536 simulation.
4 Form resource grid.
5 Compare the CellRS symbols from the grid with that of lteCellRS function.
6 Generate HDL code.

Generate transmitter waveform.

cfg = lteTestModel('1.1','15MHz');
cfg.TotSubframes = 1;
tx = lteTestModelTool(cfg);

The above transmitter waveform generation uses a 2048-point FFT, which results in a scaling factor
of  in OFDM modulation. If a 1536-point FFT were used, the waveform would have a scaling factor
of . This example multiplies the waveform by a factor of  to achieve the correct scaling.

tx = tx*(2048/1536);

To achieve a 23.04 Msps sampling rate, resample the tx samples by 

rx = resample(tx,3,4); % rate conversion from 30.72Msps to 23.04Msps

Remove cyclic prefix. The first symbol of each slot has 12 additional CP samples.

rx(11520+1:11520+12) = []; % discard 12 CP samples in slot 2
rx(1:12) = []; % discard 12 CP samples in slot 1
rx = reshape(rx,108+1536,14); % reshape to form 14 OFDM symbols
rx(1:108,:) = []; % discard remaining 108 CP samples from all symbols

Prepare inputs for FFT 1536 simulation.

SampleTime = 4.3e-8; % 1/23.04e6;
data = rx(:);
valid = true(1536*14,1);
data = fi(data,1,22,20);

dataIn = timeseries(data,(0:length(data)-1).'*SampleTime);
validIn = timeseries(valid,(0:length(valid)-1).'*SampleTime);

FFT1536Latency = 3180;

NofClks = FFT1536Latency+length(data); % number of simulation clock cycles
StopTime = (NofClks)*SampleTime;

open_system HDLFFT1536model;
sim HDLFFT1536model;
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simOut = dataOut(validOut);
simOut = double(simOut(:)*1536);

Form the resource grid and remove the DC subcarrier.

fftOut = fftshift(reshape(simOut,1536,14));
resourceGrid = fftOut(318+1:318+1+900,:);
resourceGrid(900/2+1,:) = [];

Compare the CellRS symbols from the grid with the symbols returned from the lteCellRS function.

cellRS = lteCellRS(cfg);
cellRSIndices = lteCellRSIndices(cfg);
simCellRS = resourceGrid(cellRSIndices);
figure;
plot(real(simCellRS),imag(simCellRS),'o','MarkerSize',15);
hold on;
plot(real(cellRS),imag(cellRS),'*','MarkerSize',10)
legend('CellRS symbols from the FFT 1536 simulation grid'...
    ,'CellRS symbols from lteCellRS function','Location','southoutside')
axis([-1 1 -1 1]);
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To generate HDL code for the FFT 1536 block, you must have an HDL Coder™ license. To generate
HDL code from the FFT 1536 block in this model, right-click the block and select Create Subsystem
from Selection. Then right-click the subsystem and select HDL Code > Generate HDL Code for
Subsystem.

See Also
Blocks
FFT 1536
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Convolutional Encode and Puncture Streaming Samples
This example shows how to use the hardware-friendly Convolutional Encoder and Puncturer blocks to
encode samples at WLAN code rates.

1 Generate random input frame samples with frame control signals by using the
whdlFramesToSamples function in MATLAB®.

2 Import these samples into a Simulink® model and run the model to encode and puncture the
samples.

3 Export the result of the Simulink simulation back to MATLAB.
4 Generate reference samples using the convenc MATLAB function with puncturing enabled.
5 Compare the Simulink results with the reference samples.

The example model supports HDL code generation for the EncodeAndPuncture subsystem, that
contains the Convolutional Encoder and Puncturer blocks.

modelname  = 'GenConvEncPuncturerModel';
open_system(modelname);

Set up workspace variables that describe the code rate. The Convolutional Encoder block supports
constraint lengths in the range [3,9] and polynomial lengths in the range [2,7].

Starting from a code rate of 1/2, IEEE 802.11 WLAN specifies three puncturing patterns to generate
three additional code rates. Choose one of these code rates, and then set the frame size and
puncturing pattern based on that rate. You can also choose the unpunctured code rate of 1/2.

IEEE 802.11 WLAN specifies different code rates and uses 'Terminated' mode. The blocks also
support 'Continuous' mode and 'Truncated' modes, but they are not included in this example.

constraintLength = 7;
codeGenerator = [133 171];

trellis = poly2trellis(constraintLength,...
    codeGenerator);

% IEEE 802.11n-2009 WLAN 1/2 (7, [133 171])
% Rate   Puncture Pattern     Maximum Frame Size
% 1/2     [1;1;1;1]                 2592
% 2/3     [1;1;1;0]                 1728
% 3/4     [1;1;1;0;0;1]             1944
% 5/6     [1;1;1;0;0;1;1;0;0;1]     2160
codeRate = 3/4;
if (codeRate == 2/3)
    puncVector = logical([1;1;1;0]);
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    frameSize = 1728;
elseif (codeRate == 3/4)
    puncVector = logical([1;1;1;0;0;1]);
    frameSize = 1944;
elseif (codeRate == 5/6)
    puncVector = logical([1;1;1;0;0;1;1;0;0;1]);
    frameSize = 2160;
else % codeRate == 1/2
    puncVector = logical([1;1;1;1]);
    frameSize = 2592;
end

Generate input frame samples for encoding and puncturing by using Communications Toolbox™
System objects to generate encoded samples.

numFrames = 5;

txMessages = cell(1,numFrames);
txCodeword = cell(1,numFrames);

for ii = 1:numFrames
    txMessages{ii} = logical(randn(frameSize-constraintLength+1,1));
end

Set up variables for Simulink simulation. The Simulink model requires streaming samples with
accompanying control signals. Calculate the required simulation time from the latency of the
Convolutional Encoder and Puncturer blocks.

samplesizeIn = 1;
idlecyclesbetweensamples = 0;
idlecyclesbetweenframes = constraintLength-1;
[sampleIn,ctrlIn] = whdlFramesToSamples(txMessages, ...
    idlecyclesbetweensamples,idlecyclesbetweenframes,samplesizeIn);

startIn = ctrlIn(:,1);
endIn = ctrlIn(:,2);
validIn = ctrlIn(:,3);

simTime = size(ctrlIn,1)+6;
sampletime = 1;

Run the Simulink model.

set_param([modelname '/EncodeAndPuncture'],'Open','on');
sim(modelname);

Convert the streaming samples from the Simulink block output to framed data for comparison.

sampleOut = squeeze(sampleOut);
startOut = ctrlOut(:,1);
endOut   = ctrlOut(:,2);
validOut = ctrlOut(:,3);

idxStart = find(startOut.*validOut);
idxEnd = find(endOut.*validOut);

Generate reference samples using convenc MATLAB function.
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for ii = 1:numFrames
    txCodeword{ii} = convenc([txMessages{ii};false(constraintLength-1,1)],...
        trellis,puncVector);
end

Compare the output samples against the generated input samples.

fprintf('\nEncoded Samples\n');
for ii = 1:numFrames
    idx = idxStart(ii):idxEnd(ii);
    idxValid = (validOut(idx));
    dataOut = sampleOut(:,idx);
    hdlTxCoded = dataOut(:,idxValid);
    numBitsErr = sum(xor(txCodeword{ii},hdlTxCoded(:)));
    fprintf('Number of samples mismatched in the frame #%d: %d bits\n',ii,numBitsErr);
end

Encoded Samples
Number of samples mismatched in the frame #1: 0 bits
Number of samples mismatched in the frame #2: 0 bits
Number of samples mismatched in the frame #3: 0 bits
Number of samples mismatched in the frame #4: 0 bits
Number of samples mismatched in the frame #5: 0 bits

See Also
Blocks
Convolutional Encoder | Puncturer
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OFDM Demodulation of Streaming Samples
This example shows how to use the OFDM Demodulator block to demodulate complex time-domain
OFDM samples to subcarriers for a vector input. This example model supports HDL code generation
for the OFDMDemod subsystem.

Set up input data parameters

rng('default');
numOFDMSym = 2;
maxFFTLen = 128;
DCRem = true;
RoundingMethod = 'floor';
Normalize = false;
cpFraction = 1;
fftLen = 64;
cpLen = 16;
numLG = 6;
numRG = 5;
if DCRem
    NullInd = [1:numLG fftLen/2+1 fftLen-numRG+1:fftLen];
else
    NullInd = [1:numLG fftLen-numRG+1:fftLen]; %#ok<UNRCH>
end
symbOffset = floor(cpFraction*cpLen);
vecLen = 2;

Generate frames of random input samples

data = randn(fftLen,numOFDMSym)+1i*randn(fftLen,numOFDMSym);
dataIn = ofdmmod(data,fftLen,cpLen);

Convert the framed input data to a stream of samples and import the input stream to
Simulink®

data = dataIn(:);
valid = true(length(dataIn)/vecLen,1);
fftSig = fftLen*ones(length(dataIn),1);
CPSig = cpLen*ones(length(dataIn),1);
LGSig = numLG*ones(length(dataIn),1);
RGSig = numRG*ones(length(dataIn),1);
resetSig = false(length(data),1);
sampleTime = 1/vecLen;
stopTime = (maxFFTLen*3*numOFDMSym)/vecLen;

Run the Simulink model

modelname = 'genhdlOFDMDemodulatorModel';
open_system(modelname);
out = sim(modelname);
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Export the stream of demodulated samples of the Simulink block to the MATLAB®
workspace

simOut = squeeze(out.dataOut(:,1,out.validOut==1));

Demodulate random input samples using ofdmdemod_baseline function

[dataOut1] = ofdmdemod_baseline(dataIn,fftLen,cpLen,symbOffset,NullInd.',[],Normalize,RoundingMethod);
matOut = dataOut1(:);

Compare the output of the Simulink model against the output of ofdmdemod_baseline
function

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1)
plot(real(matOut(:)));
hold on;
plot(real(simOut(:)));
grid on
legend('Reference','Simulink')
xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink block and MATLAB function - Real part')

subplot(2,1,2)
plot(imag(matOut(:)));
hold on;
plot(imag(simOut(:)));
grid on
legend('Reference','Simulink')
xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink block and MATLAB function - Imaginary part')
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sqnrRealdB=10*log10(var(real(simOut(:)))/abs(var(real(simOut(:)))-var(real(matOut(:)))));
sqnrImagdB=10*log10(var(imag(simOut(:)))/abs(var(imag(simOut(:)))-var(imag(matOut(:)))));

fprintf('\n OFDM Demodulator: \n SQNR of real part is %.2f dB',sqnrRealdB);
fprintf('\n SQNR of imaginary part is %.2f dB\n',sqnrImagdB);

 OFDM Demodulator: 
 SQNR of real part is 47.77 dB
 SQNR of imaginary part is 42.69 dB

See Also
Blocks
OFDM Demodulator
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Decode and recover message from RS codeword
This example shows how to use RS Decoder block to decode and recover a message from a Reed-
Solomon (RS) codeword. In this example, a set of random inputs are generated and provided to the
comm.RSEncoder function and its output is provided to the RS Decoder block. The output of the RS
Decoder block is compared with the input of the comm.RSEncoder function to check whether any
errors are encountered. The example model supports HDL code generation for the RS Decoder
subsystem.

Set up input data parameters

n = 255;
k = 239;
primPoly = [1 0 0 0 1 1 1 0 1];
B = 1;
nMessages = 4;
data = zeros(k,nMessages);
inputMsg = (zeros(n,nMessages));
startSig = [];
endSig = [];

Generate random input samples

Generate random samples based on n,k, and m values and provide them as input to the
comm.RSEncoder function. Here, n is the codeword length, k is the message length, and m is the gap
between the frames.

hRSEnc = comm.RSEncoder;
hRSEnc.CodewordLength = n;
hRSEnc.MessageLength = k;
m=0;

for ii = 1:nMessages
data(:,ii) = randi([0 n],k,1);
[inputMsg(1:n,ii)] = hRSEnc(data(:,ii));
inputMsg1(1:n,ii) = inputMsg(1:n,ii);
[inputMsg(n+1:n+m,ii)] = zeros(m,1);
validIn(1:n,ii) = true;
validIn(n+1:n+m) = false;

endSig = [endSig [false(n-1,1); true;false(m,1);]];
startSig = [startSig [true;false(n+m-1,1)]];

end

refOutput = data(:);

Import the encoded random input samples to the Simulink® model

The output of the comm.RSEncoder function is provided as input to the Simulink block.

simDataIn = inputMsg(:);
simStartIn = startSig(:);
simEndIn = endSig(:);
simValidIn = validIn(:);
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Run the Simulink model

modelname = 'RSDecoder';
open_system(modelname);
out = sim(modelname);

Export the decodes samples of the Simulink block to the MATLAB® workspace.

simOutput = out.dataOut(out.validOut);

Compare the output of the Simulink block with the inputs provided to the comm.RSEncoder
function

fprintf('\nHDL RS Decoder\n');
difference = double(simOutput) - double(refOutput);
fprintf('\nTotal number of samples differed between Simulink block output and MATLAB function output is: %d \n',sum(difference));

HDL RS Decoder

Total number of samples differed between Simulink block output and MATLAB function output is: 0 

See Also
Blocks
RS Decoder

3 Reference Page Examples

3-58



LDPC Encode and Decode of Streaming Data
This example shows how to simulate the NR LDPC Encoder and NR LDPC Decoder Simulink® blocks
and compare the hardware-optimized results with the results from the 5G Toolbox™ functions. These
blocks support scalar and vector inputs. The NR LDPC Decoder block enables you to select either
Min-sum or Normalized min-sum algorithm for decoding operation.

Generate Input Data for Encoder

Choose a series of input values for bgn and liftingSize according to the 5G NR standard. Generate the
corresponding input vectors for the selected base graph number (bgn) and liftingSize values.
Generate random frames of input data and convert them to Boolean data and control signal that
indicates the frame boundaries. encFrameGap accommodates the latency of the NR LDPC Encoder
block for bgn and liftingSize values. Use the nextFrame signal to determine when the block is ready
to accept the start of the next input frame.

bgn         = [0; 1; 1; 0];
liftingSize = [4; 384; 144; 208];
numFrames = 4;
serial = false; % {false,true};

encbgnIn = [];encliftingSizeIn = [];
msg = {numFrames};
K =[];N = [];
encSampleIn = [];encStartIn = [];encEndIn = [];encValidIn = [];
encFrameGap = 2500;
for ii = 1:numFrames
    if bgn(ii) == 0
        K(ii) = 22;
        N(ii) = 66;
    else
        K(ii) = 10;
        N(ii) = 50;
    end
    frameLen = liftingSize(ii) * K(ii);
    msg{ii} = randi([0 1],1,frameLen);
    if serial
    len = K(ii) * liftingSize(ii);
    encFrameGap = liftingSize(ii) * N(ii) + 2500;
    else
    len = K(ii) * ceil(liftingSize(ii)/64); %#ok<*UNRCH>
    encFrameGap = 2500;
    end

    encIn = ldpc_dataFormation(msg{ii},liftingSize(ii),K(ii),serial);

    encSampleIn   = logical([encSampleIn encIn zeros(size(encIn,1),encFrameGap)]); %#ok<*AGROW>
    encStartIn    = logical([encStartIn  1  zeros(1,len-1)  zeros(1,encFrameGap)]);
    encEndIn      = logical([encEndIn    zeros(1,len-1) 1   zeros(1,encFrameGap)]);
    encValidIn    = logical([encValidIn    ones(1,len)      zeros(1,encFrameGap)]);
    encbgnIn      = logical([encbgnIn   repmat(bgn(ii),1,len) zeros(1,encFrameGap)]);
    encliftingSizeIn = uint16([encliftingSizeIn repmat(liftingSize(ii),1,len) zeros(1,encFrameGap)]);
end

encSampleIn = timeseries(logical(encSampleIn'));
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sampleTime = 1;
simTime = length(encValidIn);   %#ok<NASGU>

Run Encoder Model

The HDL Algorithm subsystem contains the NR LDPC Encoder block. Running the model imports the
input signal variables encSampleIn, encStartIn, encEndIn, encValidIn, encbgnIn,
encliftingSizeIn, sampleTime, and simTime and exports sampleOut and ctrlOut variables to
the MATLAB® workspace.

open_system('NRLDPCEncoderHDL');
encOut = sim('NRLDPCEncoderHDL');

Verify Encoder Results

Convert the streaming data output of the block to frames and then compare them with the output of
the nrLDPCEncode function.

startIdx = find(encOut.ctrlOut.start.Data);
endIdx = find(encOut.ctrlOut.end.Data);

for ii = 1:numFrames
    encHDL{ii} = ldpc_dataExtraction(encOut.sampleOut.Data,liftingSize(ii),startIdx(ii),endIdx(ii),N(ii),serial); %#ok<*SAGROW>
    encRef = nrLDPCEncode(msg{ii}',bgn(ii)+1);
    error = sum(abs(encRef - encHDL{ii}));
    fprintf(['Encoded Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,error);
end

Encoded Frame 1: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 2: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 3: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 4: Behavioral and HDL simulation differ by 0 bits

Generate Input Data for Decoder

Use the encoded data from the NR LDPC Encoder block to generate input log-likelihood ratio (LLR)
values for the NR LDPC Decoder block. Use channel, modulator, and demodulator system objects to
add some noise to the signal. Again, create vectors of bgn and liftingSize and convert the frames of
data to LLRs with a control signal that indicates the frame boundaries. decFrameGap accommodates
the latency of the NR LDPC Decoder block for bgn, liftingSize, and number of iterations. Use the
nextFrame signal to determine when the block is ready to accept the start of the next input frame.
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nVar = 1.2;
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod', ...
    'Approximate log-likelihood ratio','Variance',nVar);

algo = 'Normalized min-sum'; %{ Min-sum, 'Normalized min-sum' };
if strcmpi(algo,'Min-sum')
    alpha = 1;
else
    alpha = 0.75;
end

numIter = 8;
decbgnIn = [];decliftingSizeIn = [];
rxLLR = {numFrames};
decSampleIn = [];decStartIn = [];decEndIn = [];decValidIn = [];

for ii=1:numFrames
    mod = bpskMod(double(encHDL{ii}));
    rSig = chan(mod);
    rxLLR{ii} = fi(bpskDemod(rSig),1,6,0);

    if serial
        len = N(ii)* liftingSize(ii);
        decFrameGap = numIter *7000 + liftingSize(ii) * K(ii);
     else
        len = N(ii)* ceil(liftingSize(ii)/64);
        decFrameGap = numIter *1200;
     end

    decIn = ldpc_dataFormation(rxLLR{ii}',liftingSize(ii),N(ii),serial);

    decSampleIn   = [decSampleIn decIn zeros(size(decIn,1),decFrameGap)]; %#ok<*AGROW>
    decStartIn    = logical([decStartIn  1  zeros(1,len-1)  zeros(1,decFrameGap)]);
    decEndIn      = logical([decEndIn    zeros(1,len-1) 1   zeros(1,decFrameGap)]);
    decValidIn    = logical([decValidIn    ones(1,len)      zeros(1,decFrameGap)]);
    decbgnIn         = logical([decbgnIn   repmat(bgn(ii),1,len) zeros(1,decFrameGap)]);
    decliftingSizeIn = uint16([decliftingSizeIn repmat(liftingSize(ii),1,len) zeros(1,decFrameGap)]);
end

decSampleIn = timeseries(fi(decSampleIn',1,6,0));

simTime = length(decValidIn);

Run Decoder Model

The HDL Algorithm subsystem contains the NR LDPC Decoder block. Running the model imports the
input signal variables decSampleIn, decStartIn, decEndIn, decValidIn, decbgnIn,
decliftingSizeIn, numIter, sampleTime, and simTime and exports a stream of decoded output
samples sampleOut along with control signal ctrlOut to the MATLAB workspace.

open_system('NRLDPCDecoderHDL');
if alpha ~= 1
    set_param('NRLDPCDecoderHDL/HDL Algorithm/NR LDPC Decoder','Algorithm','Normalized min-sum');
else
    set_param('NRLDPCDecoderHDL/HDL Algorithm/NR LDPC Decoder','Algorithm','Min-sum');
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end
decOut = sim('NRLDPCDecoderHDL');

Verify Decoder Results

Convert the streaming data output of the block to frames and then compare them with the output of
the nrLDPCDecode function.

startIdx = find(decOut.ctrlOut.start.Data);
endIdx = find(decOut.ctrlOut.end.Data);

for ii = 1:numFrames
   decHDL{ii} = ldpc_dataExtraction(decOut.sampleOut.Data,liftingSize(ii),startIdx(ii),endIdx(ii),K(ii),serial); %#ok<*SAGROW>
   decRef = nrLDPCDecode(double(rxLLR{ii}),bgn(ii)+1,numIter, 'Algorithm','Normalized min-sum','ScalingFactor',alpha,...
            'Termination','max');
   error = sum(abs(double(decRef) - decHDL{ii}));
   fprintf(['Decoded Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,error);
end

Decoded Frame 1: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 2: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 3: Behavioral and HDL simulation differ by 0 bits
Decoded Frame 4: Behavioral and HDL simulation differ by 0 bits

See Also
Blocks
NR LDPC Decoder | NR LDPC Encoder

Functions
nrLDPCDecode | nrLDPCEncode
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Estimate Channel Using Input Data and Reference Subcarriers
This example shows how to use the OFDM Channel Estimator block to estimate a channel using input
data and reference subcarriers. In this example model, the averaging and interpolation features are
enabled. The HDL Algorithm subsystem in this example model supports HDL code generation.

Set Input Data Parameters

Set up these workspace variables for the model to use. You can modify these values according to your
requirement.

rng('default');
numOFDMSym = 980;
numOFDMSymToBeAvg = 14;
interpolFac = 3;
maxNumScPerSym = 72;
numOFDMSymPerFrame = 140;
numScPerSym = 72;

Generate Sinusoidal Input Data Subcarriers

Use the numScPerSym and numOFDMSym variables to generate complex sinusoidal input data
subcarriers with their real and imaginary parts generated separately.

dataInGrid = zeros(numScPerSym,numOFDMSym);
for numScPerSymCount = 0:numScPerSym - 1
    for numOFDMSymCount = 0:numOFDMSym - 1
        realXgain = 1 + .2*sin(2*pi*numScPerSymCount/numScPerSym);
        realYgain = 1 + .5*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame);
        imagXgain = 1 + .3*sin(2*pi*numScPerSymCount/numScPerSym);
        imagYgain = 1 + .4*sin(2*pi*numOFDMSymCount/numOFDMSymPerFrame);
        dataInGrid(numScPerSymCount+1,numOFDMSymCount+1) = realXgain*realYgain + 1i*(imagXgain*imagYgain);
    end
end
validIn = true(1,length(dataInGrid(:)));

figure(1);
surf(real(dataInGrid))
xlabel('OFDM Symbols')
ylabel('Subcarriers')
zlabel('Magnitude')
title('Input Data Grid (Real Part)')

figure(2);
surf(imag(dataInGrid))
xlabel('OFDM Symbols')
ylabel('Subcarriers')
zlabel('Magnitude')
title('Input Data Grid (Imaginary Part)')
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Generate Reference Data Subcarriers

Generate reference data subcarriers.

refDataIn = randsrc(size(dataInGrid(:),1),size(dataInGrid(:),2),[1 1]);
refValidIn = boolean(zeros(1,numOFDMSym*numScPerSym));
startRefValidIndex = randi(interpolFac,1,1);
for numOFDMSymCount = 1:numOFDMSym
    refValidIn(startRefValidIndex+(numOFDMSymCount-1)*numScPerSym:interpolFac:numScPerSym*numOFDMSymCount) = true;
end

Generate Signal with Number of Subcarriers per Symbol

Generate a signal with the number of subcarriers per symbol.

numScPerSymIn = numScPerSym*true(1,length(dataInGrid(:)));
resetSig = false(1,length(dataInGrid(:)));

Run Simulink® Model

Run the model. Running the model imports the input signal variables from the MATLAB workspace to
the OFDM Channel Estimator block in the model.

modelname = 'genhdlOFDMChannelEstimatorModel';
open_system(modelname);
out = sim(modelname);
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Export Stream of Channel Estimates from Simulink to MATLAB® Workspace

Export the output of the OFDM Channel Estimator block to the MATLAB® workspace. Plot the real
part and imaginary part of the exported block output.

simOut = out.dataOut.Data(out.validOut.Data);
N = length(simOut) - mod(length(simOut),numScPerSym);
temp = simOut(1:N);
channelEstimateSimOut = reshape(temp,numScPerSym,length(temp)/numScPerSym);

figure(3);
surf(real(channelEstimateSimOut))
xlabel('OFDM Symbols')
ylabel('Subcarriers')
zlabel('Magnitude')
title('Channel Estimator Output (Real Part)')

figure(4);
surf(imag(channelEstimateSimOut))
xlabel('OFDM Symbols')
ylabel('Subcarriers')
zlabel('Magnitude')
title('Channel Estimator Output (Imaginary Part)')

3 Reference Page Examples

3-66



 Estimate Channel Using Input Data and Reference Subcarriers

3-67



Estimate Channel Using MATLAB® Function

Estimate the channel by using the channelEstReference function with the sinsusoidal input data
subcarriers.

dataOut1 = channelEstReference(...
    numOFDMSymToBeAvg,interpolFac,numScPerSym,numOFDMSym, ...
    dataInGrid(:),validIn,refDataIn,refValidIn,numScPerSymIn);
matlabOut = dataOut1(:);
matOut = zeros(numel(matlabOut)*numScPerSym,1);
for ii= 1:numel(matlabOut)
loadArray = [matlabOut(ii).dataOut; zeros((numel(matlabOut)-1)*numScPerSym,1)];
shiftArray = circshift(loadArray,(ii-1)*numScPerSym);
matOut =  matOut + shiftArray;
end

Compare Simulink Block Output with MATLAB® Function Output

Compare the OFDM Channel Estimator block output with channelEstReference function output.
Plot the output comparison as a real part and an imaginary part using separate plots.

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1)
plot(real(matOut(:)));
hold on;
plot(real(simOut(:)));
grid on
legend('MATLAB Reference Output','Simulink Block Output')
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xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink Block and MATLAB Function (Real Part)')

subplot(2,1,2)
plot(imag(matOut(:)));
hold on;
plot(imag(simOut(:)));
grid on
legend('MATLAB Reference Output','Simulink Block Output')
xlabel('Sample Index')
ylabel('Magnitude')
title('Comparison of Simulink Block and MATLAB Function (Imaginary Part)')

sqnrRealdB = 10*log10(double(var(real(simOut(:)))/abs(var(real(simOut(:)))-var(real(matOut(:))))));
sqnrImagdB = 10*log10(double(var(imag(simOut(:)))/abs(var(imag(simOut(:)))-var(imag(matOut(:))))));

fprintf('\n OFDM Channel Estimator \n SQNR of real part: %.2f dB',sqnrRealdB);
fprintf('\n SQNR of imaginary part: %.2f dB\n',sqnrImagdB);

 OFDM Channel Estimator 
 SQNR of real part: 38.54 dB
 SQNR of imaginary part: 37.77 dB
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See Also
Blocks
OFDM Channel Estimator
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Modulate and Demodulate OFDM Streaming Samples
This example model shows how to simulate OFDM Modulator block and Demodulator blocks. In this
model, an OFDM Modulator and an OFDM Demodulator block are connected back-to-back. The
OFDM parameters source parameter in these blocks is set to Input port, enabling you to
dynamically change the input values of these blocks. You can change these values using the script in
this example. These blocks support scalar and vector inputs. To verify the functionality of these
blocks, the input provided to the OFDM Modulator block is compared with the output of the OFDM
Demodulator block. The OFDMModDemod HDL subsystem in this example model supports HDL code
generation.

Set Input Data Parameters

Set up these workspace variables for the model to use. You can modify these values according to your
requirement. The example model uses these workspace variables dataIn, validIn, fftLen,
maxFFTLen, cpLen, numLG, numRG, numSymb, and DCNull to configure the OFDM Modulator and
OFDM Demodulator blocks.

fftLen = 64;
maxFFTLen = 128;
cpLen = 16;
numLG = 6;
numRG = 5;
numSymb = 2;
DCNull = 1; % 1 or 0
vecLen = 8; % 1, 2, 4, 8, 16, 32, or 64
if DCNull==1
    numActData = fftLen - (numLG+numRG+1);
else
    numActData = fftLen - (numLG+numRG);
end

Generate Input Data Frames

Generate random frames of complex input data and a control signal that indicates the frame
boundaries.

rng default;
dataIn = complex(randn(numActData*numSymb,1),randn(numActData*numSymb,1));
dataVec = []; % Store data arranged in vector form
presentSymbDataStartIndex = 0;
for ii = 1:numSymb
    counter = 0;
    for jj = 1:ceil(numActData/vecLen)
        if jj == ceil(numActData/vecLen)
            numZerosTobeAppended = vecLen - (numActData-counter);
            dataVec = [dataVec [dataIn(presentSymbDataStartIndex+counter+(1:vecLen-numZerosTobeAppended));zeros(1,numZerosTobeAppended).']];
        else
            dataVec = [dataVec dataIn(presentSymbDataStartIndex+counter+(1:vecLen))];
        end
        counter = counter + vecLen;
    end
    presentSymbDataStartIndex = presentSymbDataStartIndex + numActData;
end

data = dataVec.';
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valid = boolean(ones(size(data,1),1)); % Valid signal generation

sampling_time = 1;
stoptime = maxFFTLen*6*numSymb;

Run the Simulink® Model

Run the model to import the input signal variables dataIn, validIn, fftLen, maxFFTLen, cpLen,
numLG, numRG, numSymb, and DCNull from the workspace to the OFDM Modulator block. The OFDM
Modulator block returns OFDM-modulated output samples and a control signal. These OFDM-
modulated samples are fed to the OFDM Demodulator block, which returns OFDM demodulated
samples.

open_system('genhdlOFDMModDemodExample')
sim('genhdlOFDMModDemodExample');

% Store valid data from Simulink model
dataOut1 = dataOut.data;
simOut = dataOut1(:,:,validOut);
simOut = simOut(:);

Compare OFDM Modulator Input with OFDM Demodulator Output

Compare the input data provided to the OFDM Modulator block with the output data generated from
the OFDM Demodulator block.

figure('units','normalized','outerposition',[0 0 1 1])
subplot(2,1,1);
plot(real(dataIn(1:size(simOut))));
hold on
plot(squeeze(real(simOut)));
legend('Real part of reference data','Real part of demodulated data');
title('Comparison of OFDM Modulator Input with OFDM Demodulator Output');
xlabel('OFDM Subcarriers');
ylabel('Real Part');

subplot(2,1,2)
plot(imag(dataIn(1:size(simOut))));
hold on
plot(squeeze(imag(simOut)))
legend('Imaginary part of reference data','Imaginary part of demodulated data');
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title('Comparison of OFDM Modulator Input with OFDM Demodulator Output');
xlabel('OFDM Subcarriers');
ylabel('Imaginary Part');

See Also
Blocks
OFDM Modulator | OFDM Demodulator
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Polar Encode and Decode of Streaming Samples
This example shows how to simulate the NR Polar Encode and Decode blocks and compare the
hardware-optimized results with the results from 5G Toolbox™ functions.

Generate Input Data for Encoder

Choose a series of input values for K and E. These values must be valid pairs supported by the 5G NR
standard. Generate random frames of input data and add a CRC codeword. This example uses uplink
mode, so each message has 11 CRC bits. Downlink messages have 24 CRC bits, and downlink DCI
messages require prepending 1s to the frame.

Convert the message frames to streams of Boolean samples and control signals that indicate the
frame boundaries. Generate input vectors of K and E values over time. The example model imports
the workspace variables encSampleIn, encCtrlIn, encKfi, encEfi, sampleTime, and simTime.

For this example, the number of invalid cycles between frames is empirically chosen to accommodate
the latency of the NR Polar Encoder block for the specified K and E values. When the values of K and
E are larger than in this example, the number of invalid cycles between frames must be longer. Use
the nextFrame output signal of the block to determine when the block is ready to accept the start of
the next input frame.

K = [132; 132; 132; 54];
E = [256; 256; 256; 124];
numFrames = 4;
numCRCBits = 11;
idleCyclesBetweenSamples = 0;
idleCyclesBetweenFrames = 500;
samplesPerCycle = 1;
btwSamples = false(idleCyclesBetweenSamples,1);
btwFrames = false(idleCyclesBetweenFrames,1);

encKfi = [];
encEfi = [];
dataIn = {numFrames};
for ii = 1:numFrames
    msg = randi([0 1],K(ii)-numCRCBits,1);
    msg = nrCRCEncode(msg,'11'); % CRC poly is '11' for uplink and '24C' for downlink
    encKfi = [encKfi;repmat([fi(K(ii),0,10,0);btwSamples],length(msg),1);btwFrames];
    encEfi = [encEfi;repmat([fi(E(ii),0,14,0);btwSamples],length(msg),1);btwFrames];
    dataIn{1,ii} = logical(msg);
end

[encSampleIn,encCtrlIn] = whdlFramesToSamples(...
    dataIn,idleCyclesBetweenSamples,idleCyclesBetweenFrames,samplesPerCycle);

sampleTime = 1;
simTime = length(encCtrlIn) + K(numFrames)*2;   %#ok<NASGU>

Run Encoder Model

The HDL Algorithm subsystem contains the NR Polar Encoder block. Running the model imports the
input signal variables from the workspace and returns a stream of polar-encoded output samples and
control signals that indicate the frame boundaries. The model exports variables sampleOut and
ctrlOut to the MATLAB workspace.
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open_system('NRPolarEncodeHDL');
encOut = sim('NRPolarEncodeHDL');

Verify Encoder Results

Convert the streaming data back to frames for comparison with the results of the 5G Toolbox™
nrPolarEncode function.

encHDL = whdlSamplesToFrames(encOut.sampleOut,encOut.ctrlOut);

for ii=1:numFrames
    encRef = nrPolarEncode(double(dataIn{ii}),E(ii),10,false); % last two arguments needed for uplink only
    error = sum(abs(encRef - encHDL{ii}));
    fprintf(['Encoded Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,error);
end

Maximum frame size computed to be 256 samples.
Encoded Frame 1: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 2: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 3: Behavioral and HDL simulation differ by 0 bits
Encoded Frame 4: Behavioral and HDL simulation differ by 0 bits

Generate Input Data for Decoder

Use the encoded data to generate input log-likelihood ratios (LLRs) for the NR Polar Decoder block.
Use channel, modulator, and demodulator System objects to add noise to the signal.

Again, create vectors of K and E values, and convert the frames of data to streaming samples with
control signals. The example model imports the workspace variables decSampleIn, decCtrlIn,
decKfi, decEfi, sampleTime, and simTime.

For this example, the number of invalid cycles between frames is empirically chosen to accommodate
the latency of the NR Polar Decoder block for the specified K and E values. When the values of K and
E are larger than in this example, the number of invalid cycles between frames must be longer. Use
the nextFrame output signal of the block to determine when the block is ready to accept the start of
the next input frame.

nVar = 0.7;
chan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);
bpskMod = comm.BPSKModulator;
bpskDemod = comm.BPSKDemodulator('DecisionMethod', ...
    'Approximate log-likelihood ratio','Variance',nVar);
% more idle cycles greater list lengths. max 5251 for list 4.
% 1st pkt LL=8 just over 5000, not sure what is max?
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% should i make this a more simulink-y example to show how to use the fifo
% with the nextframe signal?
idleCyclesBetweenFrames = 6000;
btwFrames = false(idleCyclesBetweenFrames,1);
decKfi = [];
decEfi = [];
rxLLR = {numFrames};
rxLLRfi = {numFrames};
for ii=1:numFrames
    mod = bpskMod(double(encHDL{ii}));
    rSig = chan(mod);
    rxLLR{1,ii} = bpskDemod(rSig);
    rxLLRfi{1,ii} = fi(rxLLR{1,ii},1,6,0);
    decKfi = [decKfi;repmat([fi(K(ii),0,10,0);btwSamples],length(rSig),1);btwFrames];
    decEfi = [decEfi;repmat([fi(E(ii),0,14,0);btwSamples],length(rSig),1);btwFrames];
end

[decSampleIn,decCtrlIn] = whdlFramesToSamples(...
    rxLLRfi,idleCyclesBetweenSamples,idleCyclesBetweenFrames,samplesPerCycle);

simTime = length(decCtrlIn) + K(numFrames)*2;

Run Decoder Model

The HDL Algorithm subsystem contains the NR Polar Decoder block configured to use a list length of
eight. Running the model imports the input signal variables from the workspace and returns a stream
of decoded output samples and control signals that indicate the frame boundaries. The model exports
variables sampleOut, ctrlOut, and errOut to the MATLAB workspace. Select the valid values of
the errOut signal by using the ctrlOut.valid signal.

open_system('NRPolarDecodeHDL');
decOut = sim('NRPolarDecodeHDL');

Verify Decoder Results

Convert the streaming samples returned from the Simulink model into frames for comparison with
the results of the 5G Toolbox™ nrPolarDecode function.

The nrPolarDecode function returns the decoded message, including 24 recalculated CRC bits. The
NR Polar Decoder block returns the decoded message without the CRC bits, and returns the CRC
status separately on the err port.

The block and function output bits can differ for frames that report a decoding error. The block can
return a decoding error in cases when the function successfully decodes the message. The overall
decoding performance of the block is very close to that of the function.

decHDL = whdlSamplesToFrames(decOut.sampleOut,decOut.ctrlOut);
errHDL = decOut.errOut(decOut.ctrlOut(:,2));
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L = 8;
for ii = 1:numFrames
    decRef = nrPolarDecode(rxLLR{1,ii},K(ii),E(ii),L,10,false,11); % last three arguments needed for uplink only
    [decRef,errRef] = nrCRCDecode(decRef,'11'); % CRC poly is '11' for uplink, '24C' for downlink
    error = sum(abs(decRef - decHDL{1,ii}));
    fprintf(['Decoded Frame %d: Behavioral and ' ...
        'HDL simulation differ by %d bits\n'],ii,error);
    msg = dataIn{1,ii}(1:(length(dataIn{ii})-numCRCBits));
    loopErr = sum(abs(msg - decHDL{1,ii}));
    fprintf(['The decoded output message from the HDL simulation',...
        ' differs from the input message by %d bits \n'],loopErr);
    errRef = any(errRef);
    if ~errHDL(ii) && ~errRef
        fprintf('HDL and behavioral simulations successfully decoded the message. \n');
    elseif errHDL(ii) && ~errRef
        fprintf(['Behavioral simulation successfully decoded the message,',...
            ' but HDL sim reported a decode error\n']);
    elseif ~errHDL(ii) && errRef
        fprintf(['HDL simulation successfully decoded the message,',...
            ' but behavioral simulation reported a decode error\n']);
    else
        fprintf('HDL and behavioral simulations both reported a decode error. \n');
    end
end

Maximum frame size computed to be 121 samples.
Decoded Frame 1: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from the input message by 0 bits 
HDL and behavioral simulations successfully decoded the message. 
Decoded Frame 2: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from the input message by 0 bits 
HDL and behavioral simulations successfully decoded the message. 
Decoded Frame 3: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from the input message by 0 bits 
HDL and behavioral simulations successfully decoded the message. 
Decoded Frame 4: Behavioral and HDL simulation differ by 0 bits
The decoded output message from the HDL simulation differs from the input message by 0 bits 
HDL and behavioral simulations successfully decoded the message. 

See Also
NR Polar Decoder | NR Polar Encoder | nrPolarDecode | nrPolarEncode
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Sample Rate Conversion for an LTE Receiver
This example shows how to design and implement sample rate conversion for an LTE receiver front
end. The model is compatible with the Wireless HDL Toolbox™ receiver reference applications, and
supports HDL code generation with HDL Coder™.

Introduction

The “LTE HDL Cell Search” on page 5-46, “LTE HDL MIB Recovery” on page 5-80, and “LTE HDL
SIB1 Recovery” on page 5-63 reference applications require an input sampling rate of 30.72 Msps.
In practice, the sampling rate presented to hardware may differ from this, for example due to choice
of components or system design decisions. Therefore, sample rate conversion may be required to
integrate these reference applications into a larger system. The model shown in this example
converts from 125 Msps to 30.72 Msps using two FIR Decimation filters and a Farrow rate converter.
The rate change from 125 Msps to 30.72 Msps was deliberately chosen because it is not trivial to
implement yet represents an example of the type of rate change often required in a radio receiver.

Sample Rate Converter Design Overview

The conversion from 125 Msps to 30.72 Msps corresponds to a rate change factor of 0.24576. This is
implemented with the filter chain shown. First, the input signal is decimated by two (i.e. a rate
change of 1/2) using a halfband filter. Next, a Farrow rate converter is used to make a fine adjustment
to the sample rate by a factor of 1565/1592 = 0.983. Last, a decimating FIR filter implements the
final decimate-by-two stage.

The reasons behind this choice of filters is as follows:

1 The first filter stage can be done efficiently with a halfband filter. The subsequent filter then has
two cycles available per input sample to implement resource sharing.

2 A Farrow rate converter was chosen to implement the fine adjustment stage due to the high rate
change resolution achievable with this approach. This leads to a flexible design which can be
readily modified to implement other rate changes.

3 Farrow rate converters are expensive in terms of multipliers. This block was placed second in the
filter chain, as this option resulted in the least resource utilization while still meeting the
specification. If the filter was first in the chain, the width of its transition band could have been
relaxed, leading to a shorter filter, however no resource sharing would have been possible. If the
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filter was last in the chain, it would have required a narrower transition band leading to a longer
filter, however more resource sharing would have been possible.

4 It then follows that the last stage is a decimating FIR filter, which can use resource sharing by a
factor of two.

In this example, the clock rate is 125 MHz and the input sampling rate is 125 Msps, therefore no
resource sharing is implemented in the first filter stage. Stages two and three have a minimum of two
cycles per sample available, therefore resource sharing by a factor of two is implemented in parts of
the Farrow Rate Converter, and in the final FIR decimation stage. This approximately halves the
number of multipliers required to implement these stages compared to a fully parallel
implementation.

All of the filter stages have valid input and output signals. These signals are used to represent
different sampling rates throughout the filter chain. It's essential for the Farrow rate converter to
have a valid output signal because it implements a non-integer rate change. However providing a
valid input signal at the first stage means that it is not necessary to pass new data into the sample
rate converter on every cycle. This is relevant in scenarios where the hardware clock rate is greater
than the input sampling rate.

Top Level Parameters

Configure the top level parameters of the sample rate converter. FsADC is the input rate, while
FsLTERx is the output rate; that is, the input to the LTE receiver. Fpass is the passband cut-off
frequency and is set to 10 MHz to accommodate the maximum possible LTE bandwidth of 20 MHz.
Fstop is set to the Nyquist rate, however can be adjusted if more out-of-band signal rejection is
required. Ast is the stopband attenuation in dBs, and Ap is the desired amount of passband ripple.

FsADC   = 125e6;
FsLTERx = 30.72e6;
Fpass   = 10e6;
Fstop   = FsLTERx/2;
Ast     = 60;
Ap      = 0.1;

Farrow Rate Converter

The Farrow rate converter consists of (i) a fractional delay filter implemented using a Farrow
structure and (ii) control logic to determine when to generate output samples, and with which
sampling phase. In this example, the Farrow fractional delay filter approximates the impulse response
of a custom prototype filter using a set of 3rd order polynomials. The prototype filter is designed
taking the signal bandwidth and output sampling rate into account, allowing the filter length to be
minimized while avoiding aliasing within the signal of interest. The Farrow filter structure is the same
as that used in the dsp.VariableIntegerDelay (DSP System Toolbox) and
dsp.FarrowRateConverter (DSP System Toolbox) System objects. Note that the System objects
were not used here as they don't support HDL code generation from Simulink.

Define the key parameters of the Farrow rate converter. numTaps is the number of taps in each fixed-
coefficient FIR of the farrow structure. It is also the number of polynomials used in the
approximation. FsIn and FsOut are the input and output rates respectively. Fsig is the bandwidth of
the signal of interest. The filter is designed to avoid aliasing within this region. sps is the number of
samples per section (also known as the oversampling factor) used while designing the prototype filter.

farrow.numTaps = 6;
farrow.FsIn    = FsADC/2;
farrow.FsOut   = 2*FsLTERx;
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farrow.Fsig    = Fpass;
farrow.sps     = 16;

Design the prototype filter, and approximate it with a set of polynomials. A helper class called
FarrowDesignUtils contains a set of methods which are used to design and analyze the fractional
delay filter. These methods will not be discussed in detail. Refer to the source code for more
information.

farrow.prototype   = FarrowDesignUtils.designFilterPrototype(farrow);
farrow.polynomials = FarrowDesignUtils.generatePolynomialCoefficients(farrow);

Evaluate the impulse response of the approximation, and compare it to the prototype filter. For
visualization purposes, the reconstruction is performed with 100 samples per section in contrast to
the prototype filter, which only contains 16 samples per section.

[protoInterp,ta] = FarrowDesignUtils.evaluateApproximation(farrow.polynomials,100);

srcPlots.FarrowIR = figure;
tp = ((0:length(farrow.prototype)-1) - floor(length(farrow.prototype)/2))/farrow.sps;
stem(tp,farrow.prototype,'.'); hold on;
plot(ta,protoInterp);

SRCTestUtils.setPlotNameAndTitle('Farrow Impulse Response');
ylabel('p[k]');
xlabel('Discrete time index, k');
legend('Prototype filter','Piece-wise polynomial approximation');
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Compare the approximation to the prototype filter in the frequency domain. The reconstruction is
performed with 16 samples per section to match the sampling rate of the prototype filter and
facilitate the comparison. The plot also highlights the spectral components which will alias on top of
the signal of interest once it has been converted to the output rate. This shows that no significant
aliasing will occur.

protoApprox = FarrowDesignUtils.evaluateApproximation(farrow.polynomials,farrow.sps);

srcPlots.FarrowFreq = figure; clf;

Fsover = farrow.sps  * farrow.FsIn;
Nfft   = 2048;
f      = Fsover*(-Nfft/2:Nfft/2-1)/Nfft;
plot(f/1e6,20*log10(abs(fftshift(fft(farrow.prototype/farrow.sps,Nfft)))),'g'); hold on;
plot(f/1e6,20*log10(abs(fftshift(fft(protoApprox/farrow.sps,Nfft)))),'b');
ax = axis;
axis([ax(1) ax(2) -80 30]);
FarrowDesignUtils.plotSignalImages(farrow.FsOut);

SRCTestUtils.setPlotNameAndTitle('Farrow Frequency Response');
xlabel('Frequency [MHz]');
ylabel('Magnitude [dB]');
legend('Prototype filter','Approximation','Spectral images at FsOut');
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Decimating FIR Filters

Design the first and last FIR filter stages. Both filters use 16-bit coefficients. For convenience, the
coefficients data type is defined.

FIRCoeffsDT = numerictype(1,16,15);

Halfband Decimator

Design a halfband filter to efficiently decimate the input by 2.

hbParams.FsIn                = FsADC;
hbParams.FsOut               = FsADC/2;
hbParams.TransitionWidth     = hbParams.FsOut - 2*Fpass;
hbParams.StopbandAttenuation = Ast + 10;

hbSpec = fdesign.decimator(2,'halfband',...
    'Tw,Ast',...
    hbParams.TransitionWidth, ...
    hbParams.StopbandAttenuation,...
    hbParams.FsIn);

halfband = design(hbSpec,'SystemObject',true);

halfband.FullPrecisionOverride = false;
halfband.CoefficientsDataType  = 'Custom';
halfband.CustomCoefficientsDataType = numerictype([],...
    FIRCoeffsDT.WordLength,FIRCoeffsDT.FractionLength);

Plot the frequency response of the filter, including the quantized response.

srcPlots.halfband = fvtool(halfband,'arithmetic','fixed');
SRCTestUtils.setPlotNameAndTitle('Halfband FIR');
legend('Quantized filter','Reference filter','Design constraints');
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Final FIR Decimator

Design the final decimate-by-2 FIR filtering stage.

finalSpec = fdesign.decimator(2,'lowpass',...
    'Fp,Fst,Ap,Ast',Fpass,Fstop,Ap,Ast,farrow.FsOut);

finalFilt = design(finalSpec,'equiripple','SystemObject',true);

finalFilt.FullPrecisionOverride = false;
finalFilt.CoefficientsDataType  = 'Custom';
finalFilt.CustomCoefficientsDataType = numerictype([],...
    FIRCoeffsDT.WordLength,FIRCoeffsDT.FractionLength);

Plot the frequency response of the filter, including the quantized response.

srcPlots.finalFilt = fvtool(finalFilt,'arithmetic','fixed');
SRCTestUtils.setPlotNameAndTitle('Final Decimating FIR');
legend('Quantized filter','Reference filter','Design constraints');
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Simulink HDL Implementation

Open the model and update the diagram. The top level of the model is shown. HDL code can be
generated for the Sample Rate Converter subsystem.

stopTime  = 0;
dataIn    = 0;
validIn   = false;
modelName = 'SampleRateConversionHDL';
open_system(modelName);
set_param(modelName,'SimulationCommand','Update');
set_param(modelName, 'Open','on');
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As discussed, the sample rate converter contains a halfband filter, a Farrow rate converter and a final
FIR decimation stage.

set_param([modelName '/Sample Rate Converter'],'Open','on');

The halfband FIR is implemented using the Discrete FIR Filter HDL Optimized block, and a MATLAB
function block to implement decimation by 2. The FIR block uses a transposed filter structure, which
optimizes for symmetry and zero coefficients.

set_param([modelName '/Sample Rate Converter/Halfband Filter'],'Open','on');

The Farrow rate converter comprises a Filter Bank of fixed-coefficient FIRs, a Sample Controller
for generating the output timing, and a Sum Product Chain to compute the final output samples.
The Sample Controller uses a validOut signal to tell the Sum Product Chain when to generate a
new output sample. It also passes the new sampling phase as a fraction, rho, where 0 <= rho < 1.

set_param([modelName '/Sample Rate Converter/Farrow Rate Converter'],'Open','on');

The Filter Bank subsystem is implemented with four Discrete FIR Filter HDL Optimized blocks.
Each block is configured to share resources according to the Min cycles between valid input
samples parameter of the Farrow Fate Converter subsystem, which is set to 2 in this case. The
latency of the FIRs may differ from one another due to symmetry and zero coefficient optimization,
therefore each filter also has an associated latency matcher (delay) block to compensate for any
differences. The additional delay needed to compensate for the latency of each filter is calculated by
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the getSubFilterMatchingLatencies function. getSubFilterMatchingLatencies is called
during model initialization and assigned to a variable called matchLatencies. To see this, edit the
Farrow Rate Converter subsystem mask and go to the Initialization tab. In this example, all of the
filters have equal latency, therefore all of the latency matcher have a delay of zero. If the Farrow
coefficients are changed via the block mask, the FIR latencies may change and the latency
matcher blocks will automatically compensate for any differences. Finally all four filter outputs are
passed out in a vector.

set_param([modelName '/Sample Rate Converter/Farrow Rate Converter/Filter Bank'],'Open','on');

The Sum Product Chain combines the four FIR outputs with rho to generate output samples
according to the Farrow structure.

set_param([modelName '/Sample Rate Converter/Farrow Rate Converter/Sum Product Chain'],'Open','on');
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Validation and Verification

An LTE test signal is generated at 125 Msps and passed through the rate converter. An Error Vector
Magnitude (EVM) measurement is then performed, confirming that the resampler is suitable for use
in an LTE receiver. For reference, three different methods are used to resample the signal to 30.72
Msps and their EVM results compared. The three methods are:

1 The MATLAB resample function.
2 A MATLAB model of the rate converter.
3 The Simulink HDL model of the rate converter.

In addition, to confirm correct operation of the HDL implementation, the root-mean-square error
between the outputs of the MATLAB and Simulink rate converter models is computed.

Generate a 20 MHz LTE test signal sampled at 125 Msps.

rng(0);
enb              = lteRMCDL('R.9');
enb.TotSubframes = 2;
[tx, ~, sigInfo] = lteRMCDLTool(enb,randi([0 1],1000,1));
dataIn = resample(tx,FsADC,sigInfo.SamplingRate);
dataIn  = 0.95 * dataIn / max(abs(dataIn));
validIn = true(size(dataIn));

Use the resample function to resample the received signal from the ADC rate to 30.72 Msps. This
provides a good quality reference to compare to the rate converter.

resampleOut = resample(dataIn,FsLTERx,FsADC);

Pass the signal through a MATLAB model of the rate converter.

halfbandOut       = halfband(dataIn);
farrowOut         = FarrowDesignUtils.convertSampleRate(farrow,halfbandOut);
farrowOut         = farrowOut(1:length(farrowOut)-mod(length(farrowOut),2));
floatResamplerOut = finalFilt(farrowOut);

Pass the signal through the fixed-point Simulink HDL implementation model.

stopTime       = (length(dataIn)+1000)/FsADC;
simOut         = sim(modelName);
fiResamplerOut = simOut.dataOut(simOut.validOut);
fiResamplerOut = fiResamplerOut(1:length(floatResamplerOut));
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Plot validIn and validOut to show the overall rate change of the sample rate converter. validIn
is always HIGH, whereas validOut is HIGH about a quarter (0.24576%) of the time.

srcPlots.validSignals = figure;
Ns = 300;
validInSlice = validIn(1:Ns);
validOutSlice = simOut.validOut(1:Ns);
subplot(2,1,1);
plot((0:Ns-1)/FsADC,validInSlice);
axis([0 (Ns-1)/FsADC -0.1 1.2]);
ylabel('validIn');
xlabel('time');
subplot(2,1,2);
plot((0:Ns-1)/FsADC,validOutSlice);
axis([0 (Ns-1)/FsADC -0.1 1.2]);
ylabel('validOut');
xlabel('time');

Compute the root mean square error between the outputs of the MATLAB and Simulink models of the
rate converter

e = floatResamplerOut-fiResamplerOut;
rootMeanSquareError = sqrt((e' * e)/length(e));
disp(['Root-mean-square error: ' num2str(rootMeanSquareError)]);

Root-mean-square error: 9.4529e-05

Measure the EVM of all three resampling methods.
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results.resampleEVM                    = SRCTestUtils.MeasureEVM(sigInfo,resampleOut,FsLTERx);
results.floatPointSRCEVM               = SRCTestUtils.MeasureEVM(sigInfo,floatResamplerOut,FsLTERx);
[results.fixedPointSRCEVM,fiEqSymbols] = SRCTestUtils.MeasureEVM(sigInfo,fiResamplerOut,FsLTERx);

disp('LTE Error Vector Magnitude (EVM) Measurements');
disp(['     resample function RMS EVM: '  num2str(results.resampleEVM.RMS*100,3) ' %']);
disp(['    resample function Peak EVM: ' num2str(results.resampleEVM.Peak*100,3) ' %']);
disp(['    floating point SRC RMS EVM: '  num2str(results.floatPointSRCEVM.RMS*100,3) ' %']);
disp(['   floating point SRC Peak EVM: ' num2str(results.floatPointSRCEVM.Peak*100,3) ' %']);
disp(['   fixed point HDL SRC RMS EVM: '  num2str(results.fixedPointSRCEVM.RMS*100,3) ' %']);
disp(['  fixed point HDL SRC Peak EVM: ' num2str(results.fixedPointSRCEVM.Peak*100,3) ' %']);

LTE Error Vector Magnitude (EVM) Measurements
     resample function RMS EVM: 0.0138 %
    resample function Peak EVM: 0.0248 %
    floating point SRC RMS EVM: 0.0439 %
   floating point SRC Peak EVM: 0.158 %
   fixed point HDL SRC RMS EVM: 0.0515 %
  fixed point HDL SRC Peak EVM: 0.176 %

Confirm that the signal quality is high by plotting the equalized pilot symbols from the EVM
measurement of the HDL implementation. Note that almost no blurring of the constellation points is
visible.

srcPlots.scatterPlot = scatterplot(fiEqSymbols);
SRCTestUtils.setPlotNameAndTitle('Equalized Cell RS');
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HDL Code Generation and FPGA Implementation

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL testbench for the Sample Rate
Converter subsystem. The resulting HDL code was synthesized on a Xilinx® Zynq®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table. The
design met timing with a clock frequency of 200 MHz.

disp(table(...
    categorical({'LUT'; 'LUTRAM'; 'FF'; 'BRAM'; 'DSP'}),...
    categorical({'1553'; '46'; '5629'; '0'; '60'}),...
    'VariableNames',{'Resource','Usage'}));

    Resource    Usage
    ________    _____

     LUT        1553 
     LUTRAM     46   
     FF         5629 
     BRAM       0    
     DSP        60   
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HDL Code Generation for Filtered OFDM (F-OFDM) Transmitter
Filtered OFDM (F-OFDM) applies a filter to the symbols after the IFFT in the transmitter to improve
bandwidth while maintaining the orthogonality of the complex symbols. This example implements a
transmitter F-OFDM for HDL code generation. The example shows how to go from a MATLAB®
reference model to an HDL-optimized Simulink® model. It includes converting from double to fixed-
point types, and minimizing the resource use of the design on an FPGA.

Refer to “F-OFDM vs. OFDM Modulation” for comparison between OFDM and F-OFDM waveforms.

System Parameters

Set the desired F-OFDM properties.

NDLRB             = 108;
WaveformType      = 'F-OFDM';
SubcarrierSpacing = 60*1e3; %Hz
CellRefP          = 1;
CyclicPrefix      = 'Normal';
FilterLength      = 513;
ToneOffset        = 2.5000;
CyclicExtension   = 'off';

Call the h5gOFDMInfo function to calculate F-OFDM parameters. The method calculates FFT length,
cyclic prefix lengths and number of subcarriers.

genb = struct('NDLRB', NDLRB,...
              'WaveformType', WaveformType,....
              'SubcarrierSpacing', SubcarrierSpacing*1e-3,...
              'FilterLength', FilterLength,...
              'ToneOffset', ToneOffset,...
              'CellRefP', CellRefP,...
              'CyclicPrefix', CyclicPrefix,...
              'CyclicExtension', CyclicExtension);
info = h5gOFDMInfo(genb);

Generate a Grid of Input Data
QAMModulation    = '64QAM';
TotSubframes     = 5;
[txgrid, bitsIn] = generateOFDMGrid(genb,info,QAMModulation,TotSubframes);

Reference MATLAB Model

The reference model runs a floating-point F-OFDM system and plots the spectrum. Use the reference
model to compare against the fixed-point model that supports HDL code generation.

[txSig_ref,txinfo] = h5gOFDMModulate(genb,txgrid);

Model the channel by adding noise to the signal.

snrdB = 18;
S = RandStream('mt19937ar','Seed',1);
rxSig_ref = awgn(double(txSig_ref),snrdB,'measured',S);

The received signal must be synchronized and aligned. In real situations, the receiver includes
symbol synchronization. In this example, the receiver corrects for the shift of the frame by the

transmitter filter by  .
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rxSig_ref_sync = circshift(rxSig_ref,-floor(FilterLength/2));

Recover data, calculate BER, and display constellation.

[constDiagRx, ber, rxgrid_ref] = FOFDM_Receiver(rxSig_ref_sync, bitsIn, genb,...
                                 QAMModulation, 'F-OFDM Reception (REF)');
disp(['F-OFDM Reception (REF)', ' BER = ' num2str(ber(1)) ' at SNR = ' num2str(snrdB) ' dB']);
constDiagRx(rxgrid_ref(:));

F-OFDM Reception (REF) BER = 0.0094568 at SNR = 18 dB

The spectrum shows clear improvement of out-of-band radiation of the subband signal, and increase
in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig_ref,txinfo,genb,'F-OFDM Spectrum (REF)');
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Simulink Fixed-point Model

model = 'FOFDMTransmitterHDLExample_FixPt';
load_system(model);
open_system([model, '/F-OFDM']);

To generate HDL from the model, fixed-point data type must be used instead of double. For 64-point
QAM, at least 6 bits + 1 sign bit is needed. However, to achieve reasonable BER, the input word
length must be increased, considering the FPGA's limitation. Multipliers in FPGAs have limited input
word length. For example, Xilinx's DSP48 has 18*25-bit multiplier. For an optimal design, a
wordlength is chosen so that all multipliers in the FFT and the filter are smaller than 18*25-bit
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multipliers. In this example, the FFT HDL Optimized block uses the "Divide butterfly outputs by two"
option. The input word length is 16 bits.

You can run the Simulink model with floating point data by setting WORDLENGTH=-1. However, this
mode is not supported for HDL code generation.

WORDLENGTH = 16;

Set the number of fractional bits to WORDLENGTH - 2 bits to cover -1 <= Symbol <= 1.

FRACTIONLENGTH = WORDLENGTH - 2;

Generating OFDM Symbols

The input data to the IFFT is assumed to be a proper OFDM symbol and resides in a memory (OFDM
Symbol subsystem in the model) that can be read by F-OFDM Subsystem. Therefore, the transmitter's
sample rate depends on the data availability in the memory and FPGA clock frequency. If the data is
available all the time, then the sample rate is limited to

.

On the other hand, the required sample rate is calculated by  and
it is equal to 122.88 Msps for this example. To achieve 122.88 Msps the clock frequency should be at
least 135.36 MHz.

ifftin = generateOFDMSymbol(txgrid,info,genb);

Filter Design

The appropriate filter should have a flat passband over the subcarriers and sharp transition to
minimize guard bands. It also needs sufficient stopband attenuation. A prototype filter  is
used, where  is a SINC function and

.

fnum = generateFilterCoef(genb,info);

Simulation

Set up the model and run. Note that due to the system latency, the model needs to be simulated
longer to collect enough data.

Nfft = info.Nfft;
CyclicPrefixLengths = info.CyclicPrefixLengths;
SymbolsPerSubframe = info.SymbolsPerSubframe;

STOPTIME = 4 * TotSubframes * info.SamplesPerSubframe;

sim(model);
txSig_fixpt = TX_WAVEFORM(1: size(txSig_ref));

Model the channel by adding some noise to the signal. Note that the same noise is used as in the
reference MATLAB model.

S = RandStream('mt19937ar','Seed',1);
rxSig_fixpt = awgn(double(txSig_fixpt),snrdB,'measured',S);
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Perform symbol synchronization, recover data, calculate BER, and display constellation.

rxSig_fixpt_sync = circshift(rxSig_fixpt,-floor(genb.FilterLength/2));

[constDiagRx,ber,rxgrid_fixpt] = FOFDM_Receiver(rxSig_fixpt_sync,bitsIn, ...
                                 genb, QAMModulation,'F-OFDM Reception (FIXED-POINT)');
disp(['F-OFDM Reception (FIXED-POINT)',' BER = ' num2str(ber(1)) ' at SNR = ' num2str(snrdB) ' dB']);
constDiagRx(rxgrid_fixpt(:));

F-OFDM Reception (FIXED-POINT) BER = 0.0094453 at SNR = 18 dB

The spectrum shows even for fixed point a clear improvement of out-of-band radiation of the subband
signal, and increase in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig_fixpt,txinfo,genb,'F-OFDM Spectrum (FIXED-POINT)');
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Simulink HDL Optimized Model

The fixed point model uses a 513-tap filter in the time domain. This filter requires 2*513 multipliers
since the output of IFFT is complex. Even when implemented using a symmetric filter it needs 513
multipliers which is too many multipliers for a normal size FPGA. To reduce the number of multipliers
in the filter, the HDL Optimized model filters in the frequency domain. A frequency domain FIR filter
requires FFT of the input multiplied by FFT of the coefficients and then IFFT the result. The number
of complex multipliers in this case is

.

The frequency domain filter in this example uses 11 complex multipliers. Note that the actual number
of real multipliers depends on FFT and IFFT block setting (Complex multiplication option) and word
length. In the HDL Optimized model, the time domain FIR filter is replaced by a frequency domain
FIR filter implemented with an overlap-save architecture. Due to overlapping characteristic of the
overlap-save architecture, the sample-rate is limited to

.

Therefore, to achieve 122.88 Msps sample-rate for this example, the clock frequency must be at least
196.8 MHz.

model = 'FOFDMTransmitterHDLExample_HDLOpt';
load_system(model);
open_system([model, '/F-OFDM']);
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Set the length of the FFT for the filter. The length must be at least 2*FilterLength for frequency
domain filtering. However, because it must process the whole OFDM symbol at once use Nfft for FFT
length inside the filter. Then, calculate the FFT of the coefficients. Bit-reverse the result since the
output of the FFT for the filter is bit-reversed.

filterFFTLen = Nfft;
fftFnum = bitrevorder(fft(fnum,filterFFTLen).');

For fixed-point input data, the output of the FFT inside the filter has a bit-growth = log2(Nfft) = 11
bits. To map most of the multipliers into DSP block in FPGA, limit the input word length. For example
if DSP has a 25*18-bit multiplier, the WORDLENGTH must be 14 bits to achieve 25-bits output of the
FFT inside the filter. Also, use 18-bit coefficients.

WORDLENGTH = 14;
FRACTIONLENGTH = WORDLENGTH - 2;
if WORDLENGTH > 0 %for fixed point data
    COEF_WL = 18;
    COEF_FR = COEF_WL - 2;
    fftFnum = fi(fftFnum, 1, COEF_WL, COEF_FR,'RoundingMethod','Nearest',...
              'OverflowAction','Wrap');
end
STOPTIME = 4 * TotSubframes * info.SamplesPerSubframe;

sim(model);
txSig_HDLOpt = TX_WAVEFORM_HDLOpt(1: size(txSig_ref));

Model the channel by adding some noise to the signal. Note that the same noise is used as in the
reference MATLAB model.

S = RandStream('mt19937ar','Seed',1);
rxSig_HDLOpt = awgn(double(txSig_HDLOpt), snrdB, 'measured', S);

Perform symbol synchronization, recover data, calculate BER, and display constellation.

rxSig_HDLOpt_sync = circshift(rxSig_HDLOpt,-floor(genb.FilterLength/2));

[constDiagRx,ber,rxgrid_HDLOpt] = FOFDM_Receiver(rxSig_HDLOpt_sync,bitsIn,...
                                  genb, QAMModulation, 'F-OFDM Reception (HDLOPT)');
disp(['F-OFDM Reception (HDLOPT)',' BER = ' num2str(ber(1)) ' at SNR = ' num2str(snrdB) ' dB']);
constDiagRx(rxgrid_HDLOpt(:));

F-OFDM Reception (HDLOPT) BER = 0.010038 at SNR = 18 dB
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The spectrum shows even for fixed point a clear improvement of out-of-band radiation of the subband
signal, and increase in effective bandwidth.

FOFDMTransmitterHDLSpectrum(txSig_HDLOpt,txinfo,genb,'F-OFDM Spectrum (HDLOPT)');
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Generate HDL Code and Test Bench

Use a temporary directory for the generated files:

     systemname = 'FOFDMTransmitterHDLExample_HDLOpt/F-OFDM';
     workingdir = tempname;

You can run the following command to check the F-OFDM subsystem for HDL code generation
compatibility:

     checkhdl(systemname,'TargetDirectory',workingdir);

Run the following command to generate HDL code:

     makehdl(systemname,'TargetDirectory',workingdir);

Run the following command to generate the test bench:

     makehdltb(systemname,'TargetDirectory',workingdir);

Synthesis Result

The design was synthesized for Xilinx Zynq-7000 (xc7z045-ffg900, speed grade 2) using Vivado. This
FPGA has 900 DSP48 slices and therefore, the fixed-point version of the design doesn't fit in this
device. The HDL Optimized version of the design fits in this chip and achieves a clock frequency of
205.8 MHz which meets the required clock frequency of 196.8 MHz. The design uses 94 DSP48 (10%)
and 24 block RAMs (4%).
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Conclusion

In this example a Simulink fixed-point model was developed and optimized for hardware. The model
minimized resource usage by optimizing use of DSP on the FPGA. Comparing the results of the
floating-point model with the fixed-point model shows that 16-bit data has a similar bit error rate to
the floating-point data.

See Also

Related Examples
• “F-OFDM vs. OFDM Modulation”
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HDL Implementation of a Variable-Size FFT
This example shows how to implement a variable-size FFT using a single FFT core.

This example includes two models VariableSizeFFTHDLExample and
VariableSizeFFTArbitraryValidPatternHDLExample that show variable-size FFT implementations for
different input valid patterns.

Many popular standards like WLAN, WiMax, digital video broadcast (DVB), digital audio broadcast
(DAB), and long term evolution (LTE) provide multiple bandwidth options. The required FFT length
for OFDM modulation and demodulation for these standards varies with bandwidth option. For
example, LTE supports different channel bandwidth options from 1.4 MHz to 20 MHz, which require
FFT lengths of 128 to 2048 respectively. The FFT HDL Optimized (DSP System Toolbox) block
generates HDL code for a specific FFT length. This example demonstrates how to use the FFT HDL
Optimized block to implement a variable-size FFT.

This example generates input data in MATLAB® and imports it to Simulink® for the simulation. The
imported data is fed to the implementations of variable-size FFT using a single FFT and multiple
FFTs. To demonstrate that the single-FFT implementation matches the results of using multiple FFTs
of various sizes, both the output streams from the Simulink simulation are exported to MATLAB and
compared.

Model Architecture

The top-level subsystem in both the models implement a variable-sized FFT. The top subsystem uses a
single FFT block and the bottom subsystem provides reference data by using multiple FFT blocks of
various sizes.

The model VariableSizeFFTHDLExample can process data with a gap between valid samples,
provided the gap depends on FFT length.

modelname = 'VariableSizeFFTHDLExample';
open_system(modelname);
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Configuration of FFT Lengths

The FFT lengths are specified through a variable fftLenVecMulFFTs. The largest of these lengths is
stored in a variable fftLenSinFFT and used as the FFT length for the FFT block in the 'Variable
Size FFT using Single FFT' subsystem.

The input fftLenIn is generated by using the vector of FFT lengths specified in
fftLenVecMulFFTs.

fftLenVecMulFFTs = [128;256;512;1024;2048];
% Single FFT length used by variable size FFT.
fftLenSinFFT = max(fftLenVecMulFFTs);
% Generate |fftLenIn| by repeating each element of |fftLenVecMulFFTs| by
% |fftLenSinFFT| times and arranging in a single column.
fflen =repmat(fftLenVecMulFFTs.',fftLenSinFFT,1);
fftLenIn = uint16(fflen(:));

Input Generation

dataIn, validIn, and fftLenIn inputs are generated in MATLAB and imported to the Simulink
model. Random complex input data randInputData is generated for each of the FFT lengths
specified in fftLenVecMulFFTs. Different FFT lengths correspond to different bandwidths and
different sampling rates. For instance, in LTE, the FFT lengths of 128, 256, 512, 1024, and 2048
correspond to the sampling rates 1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, and 30.72 MHz
respectively. The symbol time for any FFT length is  . The example operates at the highest
rate among the FFT lengths specified.

The dataIn signal is generated by padding zeros in between the randInputData samples. The
figure below shows the input data and valid patterns for fftLenVecMulFFTs of 256 and 512 and
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fftLenSinFFT being 2048. For the FFT length of 256, the example inserts 7 invalid samples for
every valid sample and for the FFT length of 512, the code inserts 3 invalid samples for every valid
sample.

The model VariableSizeFFTHDLExample requires the input valid pattern to have a gap between valid
samples as shown in the figure below.

rng('default');
dataIn = zeros(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
validIn = false(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
% Loop over the FFT lengths
for ind = 1:length(fftLenVecMulFFTs)
    % Generate data of FFT length samples
    randInputData = complex(randn(1,fftLenVecMulFFTs(ind)),randn(1,fftLenVecMulFFTs(ind)));
    % Zero padding in between input data samples
    upSamplingFac = fftLenSinFFT/fftLenVecMulFFTs(ind);
    dataIn((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(randInputData,upSamplingFac);
    % Valid corresponding to the generated data
    tempValid = true(1,fftLenVecMulFFTs(ind));
    validIn((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(tempValid,upSamplingFac);
end
inputDataType = 'fixdt(1,16,14)';  % Input data type can be modified here
set_param('VariableSizeFFTHDLExample/Data Type Conversion','OutDataTypeStr', inputDataType);
% Get FFT latency
fftObj = dsp.HDLFFT('FFTLength',fftLenSinFFT,...
    'Architecture','Streaming Radix 2^2',...
    'ComplexMultiplication','Use 3 multipliers and 5 adders',...
    'BitReversedOutput',false,...
    'BitReversedInput',false,...
    'Normalize',false);
latency=getLatency(fftObj); % Default latency is 4137 for 2048 point FFT.
additionPipelineDelay = 6; % Number of additional pipeline delays
% Simulink simulation end time Total Latency = Latency of FFT + Latency of
% data controller (5 clock cycles).
% Total simulation running time = Total
% number of input samples + Total Latency + Pipeline delay.
simTime = fftLenSinFFT*(length(fftLenVecMulFFTs) + 1) + latency + additionPipelineDelay ;

Variable-Size FFT using Single FFT

The 'Variable-Size FFT using Single FFT' design includes a Data Controller, an FFT HDL
Optimized block, and a Bin selection subsystem.

open_system([modelname '/Variable Size FFT using Single FFT']);

 HDL Implementation of a Variable-Size FFT

4-27



The Data Controller subsystem controls the input data so that the input to the FFT HDL
Optimized block has data samples with zeros padded in between them. The FFT HDL Optimized block
is configured for an FFT length of 2048, the largest FFT length required by the LTE standard. To
simplify selection of the output bins, the FFT block is configured to output the samples in bit-natural
order. The FFT length is specified through input port and is sampled at the start of the frame. The
requested FFT length must be delayed to match the FFT latency. The FFT length is registered using
the start output signal of the FFT and the generated end of the frame signal. This method avoids
implementing a large delay-matching memory. Since the input data has zeros in between samples, the
output of the large FFT contains repeated copies of the FFT length samples. To get the required FFT
output, the first FFT length samples are collected from the FFT output. This operation is performed
by modifying the output valid signal of the FFT using the Bin selection subsystem.

Multiple FFTs for Reference

This subsystem is used as a reference to compare against the output of Variable Size FFT using
Single FFT. The subsystem includes five different FFT blocks (FFT 128, FFT 256, FFT 512, FFT 1024,
and FFT 2048) and one MATLAB Function block. The input data will be fed to all five FFTs.
Depending on the requested FFT length, one of the five FFT blocks is activated and FFT operation is
performed. The MATLAB function block pickFFTData selects the output from the appropriate FFT
block. The output is saved to MATLAB for comparison with the output of the Variable-Size FFT using
Single FFT.

open_system([modelname '/Multiple FFTs for Reference']);
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Run Simulink Model

The MATLAB script configures desired vector of FFT lengths, the size of the single FFT, and
generates input data with a valid signal. It then runs the model, and compares the output of the two
subsystems in MATLAB.

Run the model using the sim command on the MATLAB command line.

sim(modelname);

Verification

The output from both subsystems is sent to the MATLAB workspace and the difference is plotted. In
this case, the output of the two subsystems are identical and the error between the two sets of values
is 0.

dataOut1 = out1(:);
dataOut2 = out2(:);
figVSF = figure('Visible', 'off');
plot(abs(dataOut1-dataOut2));
title('Difference between the two outputs for fixed valid pattern')
xlabel('Sample Index');
ylabel('Error');
figVSF.Visible = 'on';
bdclose(modelname);
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Support for Arbitrary Input Valid Patterns

The above model VariableSizeFFTHDLExample has a requirement of having a minimum gap between
input data samples. The gap depends on the specified FFT length and the largest FFT length handled
by the design. There may be cases where the input data may not conform to this pattern. For
example, the data may be continuous and padded with zeros at the end of the input data samples. The
following figure shows a contiguous input valid pattern with invalid samples padded at the end of
input data samples for FFT lengths of 256 and 512. The single FFT length is set to 2048. In this case,
the 256 valid samples are followed by 1792 invalid samples and the 512 valid samples are followed by
1536 invalid samples.

In such scenario, the design has to store the input samples into a RAM, and pad invalid samples
between valid samples before sending it on to the FFT. The model
VariableSizeFFTArbitraryValidPatternHDLExample can handle any arbitrary pattern of valid input so
long as the gap between frames is at least the single FFT length (2048 samples for LTE). This model
is the same as the model VariableSizeFFTHDLExample, except for the data controller subsystem. The
data controller subsystem in the model uses a RAM of size 2*fftLenSinFFT (as shown in the figure
below) to store input samples, reads out the valid samples while padding zeros between them and
then passing them to the FFT. While the input data is being written into one half of the memory, the
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data is read from the other half of the memory. As a result, the total latency is increased by
fftLenSinFFT.

modelname = 'VariableSizeFFTArbitraryValidPatternHDLExample';
load_system(modelname);
open_system([modelname '/Variable Size FFT using Single FFT/Data Controller']);

Arbitrary Input Data and Valid Generation

For generating arbitrary data and valid inputs, users can select any of these three options: zero
padding of fixed size in between data samples, zero padding at the end of data samples, and zero
padding of random size in between data samples. The input data and valid generation for these three
different zero padding patterns are shown below. The
VariableSizeFFTArbitraryValidPatternHDLExample model uses the generated data and valid for
simulation and verification.

% Initialization of input data and valid
dataIn = zeros(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
validIn = false(length(fftLenVecMulFFTs)*fftLenSinFFT,1);
zeroPaddingPattern = 'InBetween'; %'AtEnd','Random'
switch zeroPaddingPattern
    case 'InBetween'
        % Zero padding in between input data samples
        for ind = 1:length(fftLenVecMulFFTs)
            % Generate data of FFT length samples
            randInputData = complex(randn(1,fftLenVecMulFFTs(ind)),randn(1,fftLenVecMulFFTs(ind)));
            % Zero padding in between input data samples
            upSamplingFac = fftLenSinFFT/fftLenVecMulFFTs(ind);
            dataIn((ind-1)*fftLenSinFFT+1:fftLenSinFFT*ind) = upsample(randInputData,upSamplingFac);
            % Valid corresponding to the generated data
            validIn((ind-1)*fftLenSinFFT+1:upSamplingFac:fftLenSinFFT*ind) = true;
        end
    case 'AtEnd'
        % Zero padding at the end of input data samples
        for ind = 1:length(fftLenVecMulFFTs)
            % Generate data of FFT length samples
            randInputData = complex(randn(1,fftLenVecMulFFTs(ind)),randn(1,fftLenVecMulFFTs(ind)));
            % Zero padded data
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            dataIn(((ind-1)*fftLenSinFFT+1):((ind-1)*fftLenSinFFT+fftLenVecMulFFTs(ind))) = randInputData;
            % Valid corresponding to data generated
            validIn(((ind-1)*fftLenSinFFT+1):((ind-1)*fftLenSinFFT+fftLenVecMulFFTs(ind))) = true;
        end
    otherwise % Random
        for ind =1:length(fftLenVecMulFFTs)
            % Zero padding at random
            randIndices = randperm(fftLenSinFFT);
            % Generate data of FFT length samples
            randInputData = complex(randn(1,fftLenVecMulFFTs(ind)),randn(1,fftLenVecMulFFTs(ind)));
            indices = randIndices(1:fftLenVecMulFFTs(ind));
            % If the random indices does not have the first sample
            if(sum(indices==1)==0)
                indices(1) = 1;
            end
            % Zero padded data
            dataIn(indices+(ind-1)*fftLenSinFFT) = randInputData;
            % Valid corresponding to data generated
            validIn(indices+(ind-1)*fftLenSinFFT) = true;
        end
end

Run the Simulink model

Before running the model, make sure that dataIn, validIn, fftLenIn, and the necessary variables
are initialized.

sim(modelname);

Verification

dataOut1 = out1(:);
dataOut2 = out2(:);
figVSFAIV = figure('Visible', 'off');
plot(abs(dataOut1-dataOut2));
title('Difference between the two outputs for arbitrary valid pattern')
xlabel('Sample Index');
ylabel('Error');
figVSFAIV.Visible = 'on';
bdclose(modelname);
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HDL Code Generation and Verification

To generate the HDL code referenced in this example, an HDL Coder™ license is needed.

You can use the commands makehdl and makehdltb to generate the HDL code and the testbench for
the subsystems.

HDL code generated for the Variable Size FFT subsystems were synthesized for the Xilinx®
Zynq®-7000 ZC706 board. The synthesis results are shown in the following table.
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The table above shows that implementing a variable-size FFT using a single FFT uses fewer hardware
resources than using a multiple FFT solution. To support an arbitrary input valid pattern, the
hardware implementation uses more RAM.

See Also
FFT HDL Optimized
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Accelerate BER Measurement for Wireless HDL LTE Turbo
Decoder

This example shows the workflow to measure the BER of the Wireless HDL Toolbox™ Turbo Decoder
using parsim to parallelize the simulations across EbNo points. This approach can be used to
accelerate other Monte Carlo simulations.

Introduction

HDL implementations of reference applications are often complex and take a lot of time to simulate.
As a result, figuring out the bit error rate (BER) performance by running multiple simulations at
different SNR points can be very time consuming. One way to optimize this is to parallelize
simulations using the parsim command. The parsim command runs multiple simulations in parallel
when called with a Parallel Computing Toolbox™ license available. This example measures the BER of
the Wirless HDL LTE Turbo Decoder. To achieve sufficient statistical accuracy, around 100 errors
must be obtained at the decoder for each EbNo value. This translates to 1e8 bits at a BER of 10e-6.
This type of Monte Carlo simulation is a suitable candidate to parallelize using parsim, where the
BER for every EbNo point is performed on workers in parallel.

For every parallel simulation, this example sets up the input data as follows:

1 Generate input data frames;
2 Turbo encode;
3 QPSK modulate;
4 Add AWGN based on the EbNo value;
5 Demodulate the noisy symbols;
6 Generate soft decisions.

The soft decisions become the input to the Wirless HDL LTE Turbo Decoder in Simulink®. The turbo
decoded bits are compared to the transmitted bits to calculate the BER. Each parallel simulation
sends the results back to the main host.

Configure Parameters and Simulation Objects

The total number of information bits for each EbNo point, bitsPerEbNo, is divided over multiple
simulations, defined by parsimPerEbNo. In this way, every simulation runs bitsPerParsim bits for
a single EbNo point. The total number of simulations is length(EbNo)*parsimPerEbNo. This
example is configured to run only a small number of bits for demonstration purposes. In a real
scenario, you must run a sufficient number of samples through the decoder for an accurate measure
of the BER at the higher EbNo points. When choosing these parameters, consider the memory
resources available on the host. A large input data set per simulation or large number of workers
could result in slow down or memory exhaustion. The structure simParam contains the parameters
required for each simulation. This structure is sent to the simulations at a later stage.

EbNo = 0:0.1:1.1;
bitsPerEbNo = 1e5; %1e8;
parsimPerEbNo = 2; %10;
bitsPerParsim = ceil(bitsPerEbNo/parsimPerEbNo);

simParam.blkSize = 6144;
simParam.turboIterations = 6;
simParam.numFrames = ceil(bitsPerParsim/simParam.blkSize); % frames per simulation

 Accelerate BER Measurement for Wireless HDL LTE Turbo Decoder

4-35



simParam.modScheme = 'QPSK';
simParam.bps = 2; % bits per symbol
tailBits = 4; % encoder property
simParam.encoderRate = simParam.blkSize/(3*(simParam.blkSize+tailBits)); % rate 1/3 Turbo code
simParam.samplesizeIn = floor(1/simParam.encoderRate); % 3 samples in at a time
simParam.inframeSize = simParam.samplesizeIn*(simParam.blkSize+tailBits);

model = 'LTEHDLTurboDecoderBERExample';
open_system(model);

Start a local parallel pool with minimum of 1 and maximum of maxNumWorkers. If a Parallel
Computing Toolbox™ licence is not available, the simulations will be serialized. The actual size of the
pool depends on the number of available cores. Each parallel worker gets assigned one core on which
an independent MATLAB® session is launched.

maxNumWorkers = 3;
pool = parpool('local', [1 maxNumWorkers]);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 3).

Preallocate a parsim object to hold the data required for each simulation. The object can also include
handles to functions, which the model calls before or after a simulation. The MATLAB® session on
which parsim is executed acts as the main host. The main host is responsible for launching the
simulations on the workers, sending the required data to every worker, and receiving the results.

parsimIn(1:length(EbNo)*parsimPerEbNo) = Simulink.SimulationInput(model);

Replicate EbNo points to set up parsimPerEbNo simulations.

repEbNo = repmat(EbNo,parsimPerEbNo,1);
repEbNo = repEbNo(:);

Minimizing data transmission to the workers improves the performance and stability of the main host.
Therefore, this example generates the input data in-model, rather than passing the large input data
set to each worker. Input data is generated using the pre-simulation function, presimGenInput and
the BER calculation is also performed in the post-simulation function, postsimOutput. These
function handles are assigned to each SimulationInput object. The post-simulation function is
assigned inside the pre-simulation function as shown in the section Pre-Simulation and Post-
Simulation Functions.

for noiseRatio = 1:length(repEbNo)
    % Calculate the noise variance.
    EsNo = repEbNo(noiseRatio) + 10*log10(simParam.bps);
    snrdB = EsNo + 10*log10(simParam.encoderRate);
    noiseVar = 1./(10.^(snrdB/10));
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    % Use random but reproducible data.
    seed = noiseRatio;

    % For Rapid Accelerator mode, set the simulation
    % stop time before compilation.
    parsimIn(noiseRatio) = parsimIn(noiseRatio).setModelParameter('StopTime',num2str(simParam.numFrames));

    % Set pre-simulation function.
    parsimIn(noiseRatio) = parsimIn(noiseRatio).setPreSimFcn(@(simIn) presimGenInput(simIn,noiseVar,seed,simParam));
end

Run and show progress of the simulations in the command window. At the end of the simulations, the
results are sent back to the main host in an array of structures, parsimOut, with one entry created
per simulation. Once simulations are complete, shut down the parallel pool.

parsimOut = parsim(parsimIn,'ShowProgress','on','StopOnError','on');
delete(pool);

[21-Nov-2019 19:28:49] Checking for availability of parallel pool...
[21-Nov-2019 19:28:50] Starting Simulink on parallel workers...
[21-Nov-2019 19:29:07] Configuring simulation cache folder on parallel workers...
[21-Nov-2019 19:29:08] Loading model on parallel workers...
[21-Nov-2019 19:29:15] Running simulations...
Analyzing and transferring files to the workers ...done.
[21-Nov-2019 19:31:06] Completed 1 of 24 simulation runs
[21-Nov-2019 19:31:06] Completed 2 of 24 simulation runs
[21-Nov-2019 19:31:06] Completed 3 of 24 simulation runs
[21-Nov-2019 19:31:14] Completed 4 of 24 simulation runs
[21-Nov-2019 19:31:14] Completed 5 of 24 simulation runs
[21-Nov-2019 19:31:14] Completed 6 of 24 simulation runs
[21-Nov-2019 19:31:21] Completed 7 of 24 simulation runs
[21-Nov-2019 19:31:21] Completed 8 of 24 simulation runs
[21-Nov-2019 19:31:21] Completed 9 of 24 simulation runs
[21-Nov-2019 19:31:27] Completed 10 of 24 simulation runs
[21-Nov-2019 19:31:27] Completed 11 of 24 simulation runs
[21-Nov-2019 19:31:27] Completed 12 of 24 simulation runs
[21-Nov-2019 19:31:34] Completed 13 of 24 simulation runs
[21-Nov-2019 19:31:34] Completed 14 of 24 simulation runs
[21-Nov-2019 19:31:34] Completed 15 of 24 simulation runs
[21-Nov-2019 19:31:41] Completed 16 of 24 simulation runs
[21-Nov-2019 19:31:41] Completed 17 of 24 simulation runs
[21-Nov-2019 19:31:41] Completed 18 of 24 simulation runs
[21-Nov-2019 19:31:47] Completed 19 of 24 simulation runs
[21-Nov-2019 19:31:47] Completed 20 of 24 simulation runs
[21-Nov-2019 19:31:47] Completed 21 of 24 simulation runs
[21-Nov-2019 19:31:54] Completed 22 of 24 simulation runs
[21-Nov-2019 19:31:54] Completed 23 of 24 simulation runs
[21-Nov-2019 19:31:54] Completed 24 of 24 simulation runs
[21-Nov-2019 19:31:54] Cleaning up parallel workers...
Parallel pool using the 'local' profile is shutting down.

Plot BER

Extract the BER values from the array of structures. Combine the BER results for each EbNo point
and find the average BER per EbNo point.

BER = [parsimOut(:).BER];
BER = transpose(reshape(BER,parsimPerEbNo,length(BER)/parsimPerEbNo));
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avgBER = mean(BER,2);
semilogy(EbNo,avgBER,'-o');
grid;
xlabel('Eb/No (dB)');
ylabel('Bit Error Rate');

The plot below shows the results of the BER measurement with bitsPerEbNo = 1e8.
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Pre-Simulation and Post-Simulation Functions

These functions independently generate input data and process output data for each simulation,
which eliminates the need for the main host to store the data in memory for all simulations. The
presimGenInput function generates input bits, then encodes, modulates and converts them to soft
decisions. To make the input frames and parameters available to the model, they are assigned as
variables in the global workspace using the setVariable function.

function simIn = presimGenInput(simIn,noiseVar,seed,simParam)

    rng(seed);

    % Preallocate arrays for speed.
    txBits   = zeros(simParam.blkSize,simParam.numFrames,'int8');
    inFrames = zeros(simParam.inframeSize,simParam.numFrames,'single');

    % Generate input frames, turbo encode, modulate and add noise
    % based on noise variance.
    for currentFrame = 1:simParam.numFrames
        txBits(:,currentFrame) = randi([0 1],simParam.blkSize,1);
        codedData = lteTurboEncode(txBits(:,currentFrame));
        txSymbols = lteSymbolModulate(codedData,simParam.modScheme);
        noise = (sqrt(noiseVar/2))*complex(randn(size(txSymbols)),randn(size(txSymbols)));
        rxSymbols = txSymbols + noise;
        inFrames(:,currentFrame) = lteSymbolDemodulate(rxSymbols,simParam.modScheme,'Soft');
    end
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    % Set up parameters for Frame to Samples block to serialize data.
    % Leave sufficient gap between frames.
    simParam.idleCyclesBetweenSamples = 0;
    halfIterationLatency = (ceil(simParam.blkSize/32)+3)*32; % window size = 32
    algFrameDelay = 2*simParam.turboIterations*halfIterationLatency+(simParam.inframeSize/simParam.samplesizeIn);
    simParam.idleCyclesBetweenFrames = algFrameDelay;

    % Assign variables to global workspace.
    simIn = simIn.setVariable('inFrames',inFrames);
    simIn = simIn.setVariable('simParam',simParam);

    % Set post-simulation function and send required data.
    simIn =  simIn.setPostSimFcn(@(simOut) postsimOutput(simOut,txBits,simParam));

end

The post-simulation function receives the outputs of the simulation and computes the BER. The
results are stored in a structure results which parsim returns as parsimOut.

function results = postsimOutput(out, txBits, simParam)
    decodedOutValid = out.decodedOut(out.validOut);

    results.numErrors = sum(xor(txBits(:),decodedOutValid));
    results.BER = results.numErrors/(simParam.numFrames*simParam.blkSize);
end

Conclusion

This example showed how to efficiently measure the BER curve for the Wirless HDL LTE Turbo
Decoder using parsim. If a parallel pool is not used, the linear time to complete the simulations would
be approximately 16 hours. As a result of parallelization, the time to run all simulations came down to
5.4 hours, using 3 workers. This was achieved by running the simulations in Rapid Accelerator mode.
This workflow can be applied to complex reference applications which require Monte Carlo or other
simulations.
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Encode message to RS codeword
This example shows how to use the RS Encoder block to encode a message to a Reed-Solomon (RS)
codeword. In this example, a set of random inputs frames are generated and provided to the
comm.RSEncoder function. Using the whdlFramesToSamples function, these frames are converted
into samples and provided as input to the RS Encoder block. The output of the RS Encoder block is
then compared with the output of the comm.RSEncoder function to check whether the encoded
output codeword for the given input message is same. By default, the puncturing option is disabled in
this example. To enable puncturing, set the puncturing value to true. This example model supports
HDL code generation for the RS Encoder subsystem.

Set Up Input Data Parameters

Set up these workspace variable for the models to use. These variables configure the RS Encoder
block inside the model.

nMessages = 3;
n = 255; % Specify codeword length
k = 239; % Specify message length
m = n-k; % Parity length
inDataType = fixdt(0,ceil(log2(n)),0);
puncturing = false; % true for puncturing
puncturePattern = randsrc(m,1,[0 1]); % Considered, when punturing is true
shortMsg = false; % true for shortened message
k1 = k-1; % Considered when shortMsg is true

Generate Random Input Samples

Generate random samples using n, k, and m variables and provide those generated samples as input
to the comm.RSEncoder function.

hRSEnc = comm.RSEncoder;
hRSEnc.CodewordLength = n;
hRSEnc.MessageLength = k;

if isequal(shortMsg,true)
    hRSEnc.ShortMessageLength = k1;
else
    k1 = k;
end

if isequal(puncturing,true)
    hRSEnc.PuncturePatternSource = "Property";
    hRSEnc.PuncturePattern = puncturePattern;
    puncLen = n-k-sum(hRSEnc.PuncturePattern);
else
    puncLen = 0;
end

data = cell(1,nMessages);
refData = (zeros(k1+m-puncLen,nMessages));

for ii = 1:nMessages
    data{ii} = randi([0 n],k1,1);
    refData(:,ii) = hRSEnc(data{ii});
end
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refOutput = refData(:);

Generate Input Control Samples for the Simulink® Model

gapBetweenFrames = n-k;
gapBetweenSamples = 0;

[simDataIn, ctrlIn] = whdlFramesToSamples(data,gapBetweenSamples,gapBetweenFrames);
simStart = ctrlIn(:,1);
simEnd = ctrlIn(:,2);
simValidIn = ctrlIn(:,3);
stopTime = length(simValidIn);

Run Simulink Model

Run the Simulink model. The block imports the workspace variables and generates the output.

modelname = 'HDLRSEncoder';
open_system(modelname);
if isequal(puncturing,true)
    set_param([modelname '/RS Encoder/RS Encoder'],'PuncturePatternSource','on');
    set_param([modelname '/RS Encoder/RS Encoder'],'PuncturePattern',['[' num2str(puncturePattern') ']']);
end
out = sim(modelname);

Export the Simulink Block Output to the MATLAB® Workspace

The encoded samples from the RS Encoder block are exported to the MATLAB® workspace.

simOutput = dataOut(validOut);

Compare the Simulink Block Output with the MATLAB Function Output

Capture the output of the RS Encoder block. Compare that output with the output of the
comm.RSEncoder function.

fprintf('\nHDL RS Encoder\n');
difference = double(simOutput) - double(refOutput);
fprintf('\nTotal Number of samples differed between Simulink block output and MATLAB function output is: %d \n',sum(difference));
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HDL RS Encoder

Total Number of samples differed between Simulink block output and MATLAB function output is: 0 

See Also
Blocks
RS Encoder
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HDL Implementation of AWGN Generator
This example shows the implementation of an additive white Gaussian noise (AWGN) generator that
is optimized for HDL code generation and hardware implementation. The hardware implementation
of AWGN accelerates the performance evaluation of wireless communication systems using an AWGN
channel. In this example, the Simulink® model accepts signal-to-noise ratio (SNR) values as inputs
and generates Gaussian random noise along with valid signal. The example supports SNR input
ranges from –20 to 31 dB in steps of 0.1 dB.

Modern wireless communication systems includes many different simulation parameters, such as
channel bandwidth, modulation type, and code rate. The performance evaluation of these systems
with these simulation parameters is a bottleneck. Hardware capabilities of FPGAs can speed up
simulations.

Model Architecture

% Run this command to open the HDLAWGNGenerator model.

modelname = 'HDLAWGNGenerator';
open_system(modelname);
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This example demonstrates the implementation of an AWGN generator based on the Box-Muller
method. The Box-Muller method is widely adopted for Gaussian noise generation because of its
hardware-friendly architecture and constant output rate. The top-level structure of the model
includes these three subsystems.

• SNR dB to Linear Scale Converter
• Gaussian Noise Generator with Unit Variance
• Gaussian Noise Generator with Required Variance

% Run this command to open the subsystems inside AWGNGenerator model.

open_system([modelname '/AWGNGenerator']);

SNR dB to Linear Scale Converter

The dBtoLinearConverter subsystem takes an SNR value in dB as input and converts it into noise
variance in a linear scale. This noise power is used to multiply the output of the Gaussian noise with
unit variance. This lookup table approach is used for converting an SNR value in dB to a noise power
value in a linear scale. During the conversion, the signal power is assumed to be 1. This subsystem
has a latency of 1 clock cycle.

Gaussian Noise Generator with Unit Variance

The GaussianNoiseWithUnitVar subsystem generates Gaussian noise with unit variance by using the
Box-Muller method. The Box-Muller method uses two uniformly distributed random variables to
generate two normally distributed random variables through a series of logarithmic, square root,
sine, and cosine operations as shown in this figure. Those two uniformly distributed random varibles
are generated using the Tausworthe algorithm.
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Implementation of HDL Tausworthe Uniform Random Number

The Tausworthe Uniform Random Number Generator module is used to generate two 32-bit uniform
random integers. Each 32-bit uniform random number with improved statistical properties is
obtained by combining three linear feedback shift register (LFSR) based uniform random number
generators (URNGs). This implementation requires these two seeds: TausURNG1 and TausURNG2.
The whdlexamples.hdlawgnGen_init.m script file initializes these seeds.

The ConcatandExtract subsystem accepts 32-bit uniform random integers, a and b, to generate two
uniform random numbers, u0 and u1, in the range [0, 1) with bit-widths 48 and 16, respectively. u0 is
generated by concatenating the 32-bit value of a and higher 16 bits of b. Uniform random number u1
is generated by extracting the lower 16 bits of b.

open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen']);
close_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen']);
open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen/TausURNG1']);
close_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/TausUniformRandGen/TausURNG1']);

Implementation of HDL Logarithm

HDL logarithm subsystem evaluates the approximate logarithm based on the piecewise linear
polynomial method. This module has latency of 3 clock cycles. Implementation of the HDL logarithm
involves these three steps.

1 Range Reduction – In this step, the original range of the input, which is [0, 1-2^(–48)) is reduced
to a more convenient smaller range of [1, 2). The log function is approximated on the reduced
range in the next step.

2 Function Evaluation – The log function is approximated over 256 equally spaced segments in the
range [1, 2) by using a second-degree polynomial. Coefficients of the second-degree polynomial
are obtained using the polyfit function. These coefficients are stored in a lookup table, which
is indexed using the first 8 bits of input to the function evaluation block.

3 Range Reconstruction – The result of the function evaluation is expanded back to the original
range. A bit left shift operation is used for range reconstruction and to implement the –2*log
function.

Run this command to open HDL logarithm subsystem.

open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/logImplementation/log']);
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Implementation of HDL Square Root

The HDL Square root subsystem evaluates approximate square root based on the piecewise linear
polynomial method. This module has a latency of 2. The implementation of the HDL square root
involves these three steps.

1 Range Reduction – The input data type to the module is fi(0, 31, 24). This range is reduced
to a smaller range of [1, 4). The square root function is approximated on the reduced range in the
next step.

2 Function Evaluation – The square root function is approximated over 64 equally spaced segments
in the range [1, 2) and [2, 4) by using a first-degree polynomial. Coefficients of the first-degree
polynomial are stored in a lookup table, which is indexed using the first 6 bits of input to the
function evaluation block.

3 Range Reconstruction – The result of the function evaluation is expanded back to the original
range using a left shift operation.

close_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/logImplementation/log']);
open_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/SqrtImplementation/SqrtEval']);

Implementation of HDL Sine and Cosine

The HDL optimized implementation of a sine or cosine function uses a lookup table approach. Sin and
Cos are implemented using the existing Sine HDL Optimized (HDL Coder) and Cosine HDL Optimized
(HDL Coder) blocks in the HDL Coder / Lookup Tables library.

close_system([modelname '/AWGNGenerator/GaussianNoiseWithUnitVar/SqrtImplementation/SqrtEval']);

Gaussian Noise Generator with Required Variance

The GaussianNoiseWithReqVar subsystem converts Gaussian noise with unit variance to Gaussian
noise with required variance. This subsystem takes inputs from dBToLinearConvertor and
GaussianNoiseWithUnitVar subsystems. The linear noise variance obtained from
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dBToLinearConvertor is multiplied with normally distributed random variables obtained from
GaussianNoiseWithUnitVar.

Results and Plots

The whdlexamples.hdlawgnGen_init.m script file is used to specify the SNR range, generate the
required number of noise samples, initialize the seeds for TausURNG1 and TausURNG2 subsystem
and to generate coefficients for the function evaluation of the HDL log and square root.

The whdlexamples.hdlawgnGen_init.m script file is the initialization function of
HDLAWGNGenerator model. This function generates the input data and initializes the seeds for
tausURNG and coefficients for the function evaluation. Simulate HDLAWGNGenerator.slx to
generate 10^6 valid AWGN samples for each SNR of 5 dB and 15 dB. The implementation is pipelined
to maximize the synthesis frequency, generating AWGN with an initial latency of 11. Plot the
probability density function (PDF) of the AWGN output.

latency = 11;
NumOfSamples = 10^6;

% Simulate the model
open_system('HDLAWGNGenerator');
set_param(gcs,'SimulationMode','Accel');
fprintf('\n Simulating HDL AWGN Generator...\n');
outSimulink = sim('HDLAWGNGenerator','ReturnWorkspaceOutputs','on');
fprintf('\n Simulation complete.\n');
awgnSimulink = outSimulink.awgnOut;

% Plot PDF
figure;
title('PDF for Real Part of AWGN');
hold on
histogram(real(awgnSimulink(latency+1:NumOfSamples+latency)),500, ...
        'Normalization','pdf','BinLimits',[-2 2],'FaceColor','blue', ...
        'EdgeColor','none');
histogram(real(awgnSimulink(NumOfSamples+latency+1:end)),500,...
        'Normalization','pdf','BinLimits',[-2 2],'FaceColor','yellow', ...
        'EdgeColor','none');
legend('5 dB SNR','15 dB SNR');

figure;
title('PDF for Imaginary Part of AWGN');
hold on
histogram(imag(awgnSimulink(latency+1:NumOfSamples+latency)),500, ...
        'Normalization','pdf','BinLimits',[-2 2],'FaceColor','blue', ...
        'EdgeColor','none');
histogram(imag(awgnSimulink(NumOfSamples+latency+1:end)),500, ...
        'Normalization','pdf','BinLimits',[-2 2],'FaceColor','yellow', ...
        'EdgeColor','none');
legend('5 dB SNR','15 dB SNR');

 Simulating HDL AWGN Generator...

 Simulation complete.
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Verification

Compare the output of the AWGN Simulink model with the output of the HDL equivalent AWGN
MATLAB® function.

NumOfSamples = 1000;
% MATLAB output
fprintf('\n Simulating MATLAB HDL AWGN Generator for comparison...\n');
awgnMatlab=whdlexamples.hdlawgn(snrdBSimInput(1:NumOfSamples),seedsURNG1,seedsURNG2);
fprintf('\n Simulation complete. \n')

% Compare MATLAB and Simulink outputs
figure;
ax=axes('FontSize', 20);
plot(1:1000,real([awgnSimulink(latency+1:NumOfSamples+latency) awgnMatlab]));
xlabel(ax,'Number of Samples');
ylabel(ax,'Real Part of AWGN');
title(ax,'Comparison of MATLAB and Simulink Output (Real Part)');
legend('Simulink output','MATLAB output');

figure;
ax=axes('FontSize', 20);
plot(1:1000,imag([awgnSimulink(latency+1:NumOfSamples+latency) awgnMatlab]));
xlabel(ax,'Number of Samples');
ylabel(ax,'Imaginary Part of AWGN');
title(ax,'Comparison of MATLAB and Simulink Output (Imaginary Part)');
legend('Simulink output','MATLAB output');
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 Simulating MATLAB HDL AWGN Generator for comparison...

 Simulation complete. 
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HDL Code Generation

To check and generate the HDL code referenced in this example, you must have an HDL Coder™
license.

To generate the HDL code, enter this command at the MALTAB command prompt.

makehdl('HDLAWGNGenerator/AWGNGenerator')

To generate a test bench, enter this command at the MALTAB command prompt.

makehdltb('HDLAWGNGenerator/AWGNGenerator')

In this example, HDL code generated for the AWGNGenerator module is implemented for the Xilinx®
Zynq®-7000 ZC706 board. The implementation results are shown in this table.
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HDL Implementation of Digital Predistorter
This example shows the implementation of a digital predistorter (DPD) model that is optimized for
HDL code generation and hardware implementation. The predistortion mechanism is executed in two
stages. In the first stage, a set of DPD coefficients are estimated based on the input and output data
of the power amplifier (PA). In the second stage, the input data of the PA is predistorted based on the
estimated DPD coefficients and provided as new input to the PA. This example demonstrates a
system-level simulation in which the DigitalPredistorter subsystem generates HDL code, while the
DPD coefficient estimation generates C/C++ code. This example model supports only Normal and
Accelerator simulation modes.

Digital Predistortion

Digital predistortion is a baseband signal processing technique that is used for correcting
impairments in radio frequency (RF) power amplifiers. These impairments cause out-of-band
emissions or spectral regrowth and in-band distortion, which results in an increased bit error rate
(BER) and a decreased throughput of the system. Power amplifiers cause unwanted effects in the
system due to their nonlinear behavior. Communication systems using orthogonal frequency division
multiplexing (OFDM), such as a wireless local area network (WLAN), worldwide interoperability for
microwave access (WiMax), long term evolution (LTE), and 5th generation mobile network (5G), are
vulnerable to these unwanted effects. A precorrection is applied on the signal so that the cascade of
the DPD and PA is close to an ideal, linear, and memoryless system. This linearization can improve PA
power efficiency and can be more spectrum efficient. This figure shows the top-level structure of the
example.

Run this command to open the example.

modelname = 'DPDHDLExample';
open_system(modelname);

Baseband Signal Generation

The Baseband Signal Generation subsystem generates a baseband signal that is provided as input
data to the digital predistorter. Random input data is generated using a random integer signal
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generator and is mapped to 16-QAM modulation using a rectangular QAM modulator. The modulated
symbols are passed through a root raised cosine filter with a roll-off factor of 0.2. After applying an
appropriate amplitude gain on the filtered data, the amplified data is provided as input to the DPD
subsystem. You can also replace this Baseband Signal Generation subsystem with any custom
transmitter to provide data to the DPD subsystem. This figure shows the baseband input signal
generation for this example. Run this command to open the Baseband Signal Generation subsystem.

load_system(modelname);
open_system([modelname '/Baseband Signal Generation']);

Coefficients Estimation

The RPEMCoeffEstimation subsystem estimates a set of coefficients by collecting data from the input
and output of the PA. These coefficients are used to distort the signal before the power amplifier. PA
characteristics vary over time and operating conditions, so an adaptive recursive prediction error
method (RPEM) algorithm is used to estimate the DPD coefficients. The number of coefficients to be
estimated depends on the memory depth and polynomial degree of the PA. In this example, because
the total number of coefficients that need to be estimated is 25, the memory depth and polynomial
degree of the PA are set to 5. For more information about the RPEM, see [ 1 ]. To generate C/C++
code for RPEMCoeffEstimation subsystem, use the rtwbuild command. Run this command to open
the RPEMCoeffEstimation subsystem.

load_system(modelname);
open_system([modelname '/RPEMCoeffEstimation']);
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Digital Predistorter

The DigitalPredistorter subsystem distorts the input data using the coefficients estimated by
RPEMCoeffEstimation subsystem. The DPD design in this example is based on a memory polynomial,
which corrects the nonlinearities and memory effects in the PA. The estimated coefficients and the
generated input data are provided as input to the DPD for applying predistortion. The input data is
first placed in a shift register based on the memory depth. Second, this vector is concatenated with
the nonlinear products of the data depending on the polynomial degree. This concatenation forms a
vector of 25 (memory depth times degree) elements. The dot product of the obtained vector and
estimated coefficients provides the predistorted input that is fed as input to PA after upsampling. Run
this command to open the DigitalPredistorter subsystem.

load_system(modelname);
open_system([modelname '/DigitalPredistorter']);

RF Blocks Configuration

This example has a control switch to enable or disable predistortion and coefficient estimation. If you
enable the switch, the example provides the output data from DigitalPredistorter subsystem as input
to RF blocks. Otherwise, the example provides the output data from Baseband Signal Generation
subsystem as input to RF blocks as in-phase (I), quadrature-phase (Q) samples. These I/Q samples are
upsampled to 2.4 GHz and provided as input to the PA. The coefficient matrix required by the PA is
preloaded based on the standard-compliant LTE signal with a sample rate of 15.36 MHz. These
coefficients are stored in a MAT file, and the values are loaded while initializing the example. In the
other path, the data is passed through a low noise amplifier (LNA) and is down-converted before
providing it to the RPEMCoeffEstimation subsystem.

Verification and Results

Run the model. By default, the DPD and RPEMCoeffEstimation are enabled. If you disable the DPD,
the error vector magnitude (EVM) increases, and the spectral regrowth in adjacent channels
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increases. The constellation and spectrum analyzer diagrams show the results of running the model
with the DPD enabled.

sim(modelname);
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HDL Code Generation and Implementation Results

To check and generate HDL for this example, you must have HDL Coder™. Use the makehdl and
makehdltb commands to generate the HDL code and test bench for the DigitalPredistorter
subsystem.

The DigitalPredistorter subsystem is synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board.
The frequency obtained after place and route is about 220 MHz. Create a table that displays the post
place and route resource utilization results for a 16-bit complex input.

F = table(...
    categorical({'Slice Registers'; 'Slice LUT';'DSP'}), ...
    categorical({'4429'; '8196'; '160'}), ...
    categorical({'218600'; '437200'; '900'}), ...
    categorical({'2.03'; '1.87'; '17.78'}), ...
    'VariableNames', ...
    {'Resources','Utilized','Available','Utilization (%)'});
disp(F);

       Resources       Utilized    Available    Utilization (%)
    _______________    ________    _________    _______________

    Slice Registers      4429       218600           2.03      
    Slice LUT            8196       437200           1.87      
    DSP                  160        900              17.78     
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Encode Streaming Data Using General CRC Generator HDL
Optimized Block for 5G NR Standard

This example shows how to use the General CRC Generator HDL Optimized block for encoding
streaming data according to the 5G NR standard.

In this example, the output of this block is compared with the function nrCRCEncode (5G Toolbox). A
cyclic redundancy check (CRC) is an error-detection code designed to detect errors in streaming
data. A CRC generator calculates a short fixed-length binary sequence checksum and appends it with
the data. A CRC detector performs a CRC on the data and compares the resulting checksum with the
appended checksum. If the two checksums do not match, an error is detected. The CRC generator
and detector are used in the 5G NR system to detect any errors in the transport blocks of control and
uplink and downlink data channels. The 5G NR standard specifies six different cyclic generator
polynomials: CRC6, CRC11, CRC16, CRC24A, CRC24B, and CRC24C. For more information about
these polynomials, see TS 38.212 Section 5.1 [ 1 ].

Generate Input Data for NR CRC Generator

Select a CRC polynomial specified in the 5G NR standard. Generate random input data of length
frameLen and control signals that indicate the frame boundaries. The example model imports the
MATLAB® workspace variables dataIn, startIn, endIn, validIn, sampleTime, and simTime.

CRCType = 'CRC24A'; % Specify the CRCType as 'CRC6','CRC11','CRC16','CRC24A','CRC24B' or 'CRC24C'
frameLen = 100;
msg = randi([0 1],frameLen,1);

[dataIn,ctrlIn] = whdlFramesToSamples(msg);

dataIn = timeseries(logical(dataIn'));
startIn = timeseries(logical(ctrlIn(:,1)));
endIn = timeseries(logical(ctrlIn(:,2)));
validIn = timeseries(logical(ctrlIn(:,3)));

sampleTime = 1;
simTime = length(ctrlIn(:,3)) + 100;

Run NR CRC Generator Model

The nrCRCGeneratorExampleInit.m script configures the General CRC Generator HDL Optimized
block by setting the parameters of the block based on the specified CRC generator polynomial,
CRCType. This script also provides input to the reference function nrCRCEncode (5G Toolbox). The
NR CRC Generator subsystem contains the General CRC Generator HDL Optimized block. Running
the model imports the input signal variables from the workspace and returns the CRC-encoded output
and control signals that indicate the frame boundaries. The model exports variables encOut and
ctrlOut to the MATLAB® workspace.

[poly,crcPolynomial,initState,finalXORValue] = nrCRCGeneratorExampleInit(CRCType);
open_system('NRCRCGeneratorHDL');
encOut = sim('NRCRCGeneratorHDL');
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Verify NR CRC Generator Results

Convert the streaming data output of the NR CRC Generator subsystem to frames. Compare those
frames with the output of the nrCRCEncode function.

startIdx = find(encOut.startOut);
endIdx = find(encOut.endOut);
dataOut = encOut.dataOut;

dataRef = nrCRCEncode(msg,poly);
bitErr = sum(abs(dataRef - dataOut(startIdx:endIdx)));
fprintf('CRC-encoded frame: Behavioral and HDL simulation differ by %d bits\n',bitErr);

close_system('NRCRCGeneratorHDL');

CRC-encoded frame: Behavioral and HDL simulation differ by 0 bits

References

1 3GPP TS 38.212. NR ; Multiplexing and Channel Coding. 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

See Also
Blocks
General CRC Generator HDL Optimized

Functions
nrCRCEncode
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NR HDL MIB Recovery
This example shows the design of a 5G NR synchronization signal block (SSB) decoding and master
information block (MIB) recovery model optimized for HDL code generation and hardware
implementation.

Introduction

The Simulink models described in this example are HDL optimized implementations of SSB decoding
and MIB recovery for 5G. This example is one of a related set which show the workflow for designing
and deploying a 5G NR cell search and MIB recovery algorithm to hardware. The figure shows the
complete set of examples and the current example within the workflow. For more details on the
overall algorithm and workflow, see the “NR HDL Cell Search and MIB Recovery MATLAB Reference”
on page 5-14 example. The “5G NR MIB Recovery Using Analog Devices AD9361/AD9364”
(Communications Toolbox Support Package for Xilinx Zynq-Based Radio) example shows how to
deploy the algorithm to an SoC. For a general description of how MATLAB and Simulink can be used
together to develop deployable models, see “Wireless Communications Design for FPGAs and ASICs”.

MIB recovery requires SSB detection, demodulation and SSB decoding. This example focuses on the
SSB decoding aspect of MIB recovery, and SSB detection and decoding are described in “NR HDL
Cell Search” on page 5-30. The SSB decoding described in this example is designed to be used with
either MATLAB or Simulink SSB detection implementations. This example introduces the SSB
decoding model, using MATLAB reference to generate the input to the SSB decoding model and to
verify the behavior of the model. The example then shows a Simulink model integrating the SSB
detection and SSB decoding parts of the receiver to recover MIB from a baseband waveform.
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After an SSB has been detected and demodulated, the SSB needs to be decoded to extract the MIB
contents. SSB decoding requires demodulation reference signal (DMRS) search, channel estimation
and phase equalization, and broadcast channel (BCH) decoding steps as shown in the figure below.

File Structure

This example uses these files.

Simulink models

• nrhdlSSBDecoding: This Simulink model uses the nrhdlSSBDecodingCore model reference to
simulate the behaviour of the SSB decoding part of the MIB recovery process.

• nrhdlMIBRecovery: This Simulink model combines the processing of the SSB detector and the
SSB decoder into an integrated model illustrating the complete MIB recovery process. This model
uses the nrhdlSSBDetectionCore and nrhdlSSBDecodingCore model references.

• nrhdlSSBDecodingCore: This model reference implements the SSB decoding algorithm.
• nrhdlSSBDetectionCore: This model reference implements the SSB detection algorithm.

MATLAB functions and scripts

• nrhdlexamples.runSSBDecodingModel: This script uses the MATLAB reference to implement
the cell search and SSB detection algorithms, then runs the nrhdlSSBDecoding Simulink model
by calling the nrhdlexampes.ssbDecodeSimulink function. The model is verified using 5G
Toolbox functions and the MATLAB reference.

• nrhdlexamples.runMIBRecoveryModel: This script used the MATLAB reference to implement
the cell search algorithm, then runs the nrhdlMIBRecovery Simulink model. The script verifies
the operation of the model using 5G toolbox and the MATLAB reference code.

• nrhdlexamples.ssbDecodeSimulink: This function runs the nrhdlSSBDecoding Simulink
model to decode the SSB. It has the same input and output arguments as the
nrhdlexamples.ssbDecode function from the MATLAB reference.

This example also uses a number of helper functions from the nrhdlexamples package. The
Simulink models and the nrhdlexamples package are on the MATLAB path. To open one of the
models, enter its name at the MATLAB command prompt. To open a function or script from the
nrhdlexamples package, use the edit command.
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NR HDL SSB Decoding

This figure shows the nrhdlSSBDecoding model. The top level of the model reads the signals from
the MATLAB base workspace, passes them to the SSB Decoding subsystem, and writes the outputs
back to the workspace. The ParseMIB subsystem takes the pbchPayload and interprets the bit fields
to produce the MIB parameter outputs. To run the model, call the
nrhdlexamples.runSSBDecodingModel script in MATLAB.

SSB Decoding Interface

The SSB Decoding subsystem contains an instance of the nrhdlSSBDecodingCore model reference.
This section describes the inputs and outputs of that model.
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Inputs

• data: 16-bit signed complex-valued signal carrying the 4 OFDM symbols of the SSB.
• dataValid: 1-bit control signal to validate data.
• NCellID: 10-bit unsigned number which provides cell ID number for the detected SSB.
• startProcessing: 1-bit control signal which indicates when all data has been written and that cellID

and Lmax are valid.
• Lmax: 2-bit unsigned number which indicates the maximum number of SSBs in a burst. A value of

0 indicates 4 SSBs and a value of 1 indicates 8 SSBs.
• Reset: 1-bit control signal to reset the processing.

Outputs

• Status: 3-bit unsigned value indicating the progress of the current operation. See below for more
information on the possible values of this signal.

• Ibar_SSB: 3-bit unsigned value that is the index calculated by the DMRS search process.
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• ssbIndex: 3-bit unsigned value that is the index of the SSB, calculated using ibar_ssb and Lmax.
• pbchPayload: 32-bit unsigned value that contains the MIB and additional PBCH timing data.
• Diagnostics: Bus containing diagnostic signals.

Status Signal States

• 0: idle
• 1: performing DMRS search
• 2: performing PBCH decoding
• 3: performing rate recovery
• 4: performing polar decoding
• 5: CRC error (end state)
• 6: CRC pass, MIB detected (end state)

SSB Decode Model Reference Structure

This diagram shows the top level of the nrhdlSSBDecodingCore model. The input data is 4 OFDM
symbols for the synchronization signal block (SSB), with the data scaled within the range +/-1. The
model starts processing when all of the SSB data has been input to the model and startProcessing is
asserted. The startProcessing signal indicates when all of the SSB data has been written, the NCellID
and Lmax inputs are valid, and processing of the SSB can begin.

The pbch processing subsystem performs DMRS search, channel estimation and equalization, QPSK
symbol demodulation, and descrambling. The output from the pbch processing subsystem is passed to
the bch processing subsystem which performs rate recovery, polar decoding, and CRC decoding. The
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prepOutputs subsystem uses the control signal to produce the status output, and creates the
diagnostics bus using signals from intermediate points in the processing.

PBCH Processing Subsystem

The pbch processing subsystem performs DMRS search, channel estimation and equalization, and
QPSK demodulation and descrambling. Incoming data is stored in a RAM buffer where it is held until
startProcessing is asserted, indicating that all required information is available to start the DMRS
search process. The DMRS search reads the DMRS symbols from the RAM and correlates with the 8
possible DMRS sequences, selecting the strongest correlation value to determine ibar_SSB. Once the
DMRS search has been completed ibar_SSB is used to generate the reference DMRS required for
channel estimation. The reference DMRS passed to the channel est + eq subsystem along with the
received PBCH symbols and associated DMRS.

The channel est + eq subsystem performs channel estimation using the received data and the
reference DMRS. The channel estimate performs linear interpolation between DMRS locations within
an OFDM symbol, but does not perform averaging between symbols in case of any residual carrier
frequency offset. Phase equalization of the PBCH symbols is then performed, before QPSK
demodulation and descrambling are performed, using ibar_SSB and Lmax to calculate the
descrambling sequence.

BCH Processing Subsystem

The BCH processing performs rate recovery, polar decoding and CRC decoding of the BCH. The rate
recovery subsystem includes signal scaling and wordlength reduction to prepare the data for polar
decoding. The scaled, rate recovered, soft bits are then passed to the NR Polar Decoder block, which
also performs CRC decoding. The err output port from the NR Polar Decoder block indicates if
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decoding was successful or encountered any errors. The extract payload subsystem performs
descrambling and deinterleaving of the payload bits.

SSB Decode Simulation Setup

This block diagram shows the simulation setup implemented by the
nrhdlexamples.runSSBDecodingModel script. The script uses 5G Toolbox functions to generate a
test waveform. The test waveform is then processed using the MATLAB reference code for the SSB
detector to search for, then demodulate, the strongest SSB in the waveform. This provides the SSB
data input for the SSB decoding stage. The SSB data is passed to both MATLAB and Simulink
implementations, and the outputs are compared to verify the operation of the Simulink model.

SSB Decode Simulation Results

Call the nrhdlexamples.runSSBDecodingModel function to perform the SSB decode simulation
setup as described above. This function calls the MATLAB reference code followed by the Simulink
model using the functions nrhdlexamples.SSBDecoding and
nrhdlexamples.SSBDecodingSimulink.

The signals from the diagnostics bus can be used to compare and verify intermediate signals from the
Simulink simulation with the MATLAB equivalent. The plot of the correlation strengths from the
DMRS search process is shown below, with the MATLAB and Simulink signals producing the same
result.
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The equalized QPSK symbols representing the PBCH are also plotted by the script, and the output is
shown below. This plot shows that the Simulink model matches the MATLAB reference.
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The script also displays the final result of the decoding process in the command prompt, with both the
simulation and MATLAB reference results shown for comparison.
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MIB Recovery Model

The nrhdlMIBRecovery model connects the two reference models for SSB Decoding and SSB
detection (nrhdlSSBDecodingCore and nrhdlSSBDetectionCore) to create a complete MIB
recovery implementation. This model can be used to recover MIB from baseband 5G waveforms. The
script nrhdlexamples.runMIBRecoveryModel can be used to run this model and compare against
the MATLAB reference. To reduce the processing time required the cell search part of the algorithm
is performed in MATLAB then, once the strongest SSB has been determined, the Simulink model is
used to re-acquire, demodulate, and decode the SSB.

The status signal from the detector is used to start the SSB decoder when it has reached state 8,
indicating that demodulation is complete, SSS has been found and the demodulated grid has been
output. When the SSB decoder has the demodulated grid and received the startProcessing signal it
will decode the SSB, outputting the PBCH payload which is then parsed to extract the MIB data.
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HDL Code Generation and Implementation Results

To generate the HDL code for this example, you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL test bench for
nrhdlSSBDecoding/SSB Decoding or nrhdlMIBRecovery/MIB Recovery subsystems. The
resulting HDL code was synthesized for a Xilinx® Zynq®-7000 ZC706 evaluation board. The table
shows the post place and route resource utilization results. The design meets timing with a clock
frequency of 150 MHz.

Resource utilization for nrhdlSSBDecoding model:

       Resource        Usage
    _______________    _____

    Slice Registers     8896
    Slice LUTs         11229
    RAMB18                 4
    RAMB36                 5
    DSP48                 38

Resource utilization for nrhdlMIBRecovery model:

       Resource        Usage
    _______________    _____
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    Slice Registers    87760
    Slice LUTs         47747
    RAMB18                14
    RAMB36                 5
    DSP48                247

See Also

Related Examples
• “NR HDL Cell Search” on page 5-30

 NR HDL MIB Recovery

5-13



NR HDL Cell Search and MIB Recovery MATLAB Reference
This example shows how to model a 5G NR cell search and MIB recovery hardware algorithm in
MATLAB as a step towards developing a Simulink HDL implementation. Use this MATLAB reference
to verify the Simulink models in the “NR HDL Cell Search” on page 5-30 and “NR HDL MIB
Recovery” on page 5-2 examples.

Introduction

The NR HDL Cell Search and MIB Recovery MATLAB Reference example bridges the gap between a
mathematical algorithm and its hardware implementation by providing a MATLAB model of the
algorithms that are implemented in hardware. The MATLAB reference is created to evaluate
hardware-friendly algorithms and generate test vectors for verifying the Simulink HDL
implementation. These related examples show the workflow for designing and deploying a 5G cell
search and MIB recovery algorithm to hardware.

• “NR Cell Search and MIB and SIB1 Recovery” (5G Toolbox): MATLAB golden reference of the
floating-point algorithm.

• NR HDL Cell Search and MIB Recovery MATLAB Reference (this example): MATLAB hardware
reference that models hardware-friendly algorithms and generates test waveforms. This MATLAB
code operates on vectors and matrices of floating-point data samples and does not support HDL
code generation.

• “NR HDL Cell Search” on page 5-30: Simulink model of the 5G cell search subsystem that uses
the same algorithm as the MATLAB reference. This model operates on scalar fixed-point data and
is optimized for HDL code generation.
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• “NR HDL MIB Recovery” on page 5-2: Adds MIB recovery to the cell search model using the same
algorithm as the MATLAB reference. This model operates on scalar fixed-point data and is
optimized for HDL code generation.

• “5G NR MIB Recovery Using Analog Devices AD9361/AD9364” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio): Simulink model that is configured for deployment to an
SoC.

For a general description of how MATLAB and Simulink can be used together to develop deployable
models, see “Wireless Communications Design for FPGAs and ASICs”.

Cell Search and MIB Recovery Overview

A block diagram of the cell search and MIB recovery algorithm is shown. The algorithm detects,
demodulates and decodes 5G NR synchronization signal blocks (SSBs) and is a hardware-friendly
version of the corresponding steps in the “NR Cell Search and MIB and SIB1 Recovery” (5G Toolbox)
example. At the top level, the algorithm consists of a Search Controller, an SSB Detector and an SSB
Decoder. This example explains each of these blocks in more detail and demonstrates the
corresponding MATLAB reference functions, which are used to explore algorithms for hardware
implementation and to verify the streaming fixed-point Simulink models.

Cell Search

Cell search consists of carrier frequency recovery, Primary Synchronization Signal (PSS) search,
OFDM demodulation and Secondary Synchronization Signal (SSS) search. The Search Controller and
the SSB Detector work together to perform these processing steps. The SSB Detector performs all of
the high-speed signal processing tasks, making it well suited for FPGA or ASIC implementation. The
Search Controller coordinates the search and operates at a low rate, making it well suited for
software implementation on an embedded processor.

The algorithm starts by using the PSS to search for SSBs with subcarrier spacings of 15 kHz and 30
kHz across a range of coarse frequency offsets. The subcarrier spacing and coarse frequency offset
search ranges are configurable. If SSBs are detected, the receiver OFDM demodulates the resource
grid of the SSB with the strongest PSS and determines its cell ID using the SSS. The residual fine
frequency offset is corrected during the OFDM demodulation phase.
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• SSB Detector: Searches for and OFDM-demodulates SSBs at a given carrier frequency offset and
subcarrier spacing and measures the residual fine carrier frequency offset.

• Digital Down Converter (DDC): Performs frequency translation to correct frequency offsets in the
received waveform and then decimates the signal from 61.44 Msps to 7.68 Msps.

• PSS search: Searches for PSS symbols within the waveform.
• OFDM demodulation: OFDM-demodulates an SSB resource grid.
• SSS search: Searches for SSS and determines the overall cell ID.
• Search Controller: Coordinates the cell search by directing the SSB Detector to search for PSS

symbols at different coarse frequency offsets and subcarrier spacings and to demodulate the SSB
with the strongest PSS.

In the MATLAB reference, the nrhdlexamples.cellSearch function implements the cell search
algorithm. This function implements the Search Controller shown in the diagram, and calls the
nrhdlexamples.ssbDetect function, which implements the SSB Detector. The “NR HDL Cell
Search” on page 5-30 example shows the streaming fixed-point Simulink HDL implementation of the
SSB Detector. In the “5G NR MIB Recovery Using Analog Devices AD9361/AD9364” (Communications
Toolbox Support Package for Xilinx Zynq-Based Radio) example, the SSB Detector is implemented in
programmable logic while the Search Controller is implemented in software on the integrated
processing system.

Search Controller

The Search Controller is responsible for coordinating the overall search. The algorithm follows these
steps.

1 For each subcarrier spacing, step through each coarse frequency offset and use the SSB Detector
to search for SSBs until one or more is detected. The coarse frequency offset step size is half the
subcarrier spacing. When SSBs are detected at a given frequency, record the residual fine carrier
frequency offset of the strongest SSB that is returned.
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2 Move to the next coarse frequency step and search for SSBs again. If the search detects SSBs,
choose the coarse frequency offset that resulted in the smallest fine frequency offset
measurement. Otherwise, pick the last coarse frequency offset.

3 Compute the total frequency offset by adding the coarse and fine frequency offsets together.
4 Use the SSB Detector to correct the frequency offset and perform one more search for SSBs.
5 Pick the SSB with the strongest PSS correlation. Use the SSB Detector in demodulation mode to

find and demodulate the SSB and determine its cell ID.

SSB Detector

These diagrams show the SSB Detector structure and the parameters and data passed to and from
the Search Controller. The SSB Detector is subdivided into two functions: SSB Detector DDC
(nrhdlexamples.ssbDetectDDC) and SSB Detection Search and Demod
(nrhdlexamples.ssbDetectSearchDemod). The DDC accepts samples at 61.44 Msps and performs
a frequency shift followed by decimation by a factor of 8 using halfband filters. The frequency offset,
in Hz, is provided by the search controller and is used by the algorithm to compensate for both coarse
and fine frequency offsets.
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SSB Detection Search and Demod accepts samples at 7.68 Msps. For 30 kHz subcarrier spacing, it
uses the samples at this rate. For 15 kHz subcarrier spacing, it decimates the input by a factor of two,
operating at 3.84 Msps. SSB Detection Search and Demod has two modes of operation: search and
demodulation.

In search mode, the function searches for SSBs at the specified subcarrier spacing using the PSS, and
returns a list of those detected. For each SSB that is found, the function returns these parameters:

• NCellID2: Indicates which of the three possible PSS sequences (0,1, or 2) was detected.
• timing offset: The timing offset from the start of the waveform to the start of the SSB.
• fine frequency offset: The residual fine frequency offset in Hz measured by using the cyclic
prefixes of all four OFDM symbols in the SSB.

• correlation strength: The measured PSS correlation level.
• signal energy: The total energy in the samples in which the PSS was detected.

In demodulation mode, the function attempts to find a specific SSB by using its timing offset and
NCellID2. If the function finds the specified PSS, the receiver OFDM demodulates the SSB resource
grid and attempts to detect its SSS. In demodulation mode, the function returns these results.

• Updated parameters for only the specified SSB if the PSS is found.
• The demodulated SSB resource grid if the PSS is found.
• The cell ID if the SSS is found.

The OFDM demodulator uses a 256-point FFT to demodulate the SSB resource grid, which contains
240 active subcarriers.

5 Reference Applications

5-18



Timing Offsets

The cell search algorithm uses timing offsets to identify positions within the received waveform and
intermediate signals. A timing offset is the number of samples from the start of the waveform to a
given position, such as the start of an SSB. Timing offsets are given in samples at 61.44 Msps and
wrap around every 20 ms, or 1228800 samples. In 5G NR, UEs can assume that the SS burst
periodicity is 20 ms or less for cell search purposes, hence the reason for this choice of timing
reference periodicity.

The figure shows two 5G waveforms with different SS burst periodicities (5 ms and 20 ms) and the
receiver timing reference. The MATLAB reference can detect SSBs at any position within the received
waveform. However, if the waveform is longer than 20 ms, ambiguity in the returned timing offsets
exists because the timing reference wraps around every 20 ms. Additionally, the receiver can
demodulate only SSBs that begin within the first 20 ms of the waveform.

SSB Decoding

The diagram shows the structure of the SSB decoder, which is implemented by the
nrhdlexamples.ssbDecode function. The algorithm takes the SSB resource grid from the OFDM
demodulation phase of the SSB detector, processes it through PBCH and BCH decoding, and outputs
MIB parameters and PBCH timing information.
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PBCH decoding takes the demodulated OFDM symbols of the resource grid and processes using
these steps:

• DMRS Search: Searches for the index used for demodulation reference symbol (DMRS) generation
• Channel Estimation: Calculates an estimate of the channel using the DMRS
• Channel Equalization: Equalizes the received data using the channel estimate
• Symbol Demod: Performs QPSK demodulation to get the PBCH soft bits
• Descramble: Descrambles the soft bits

BCH Decode then processes the descrambled soft bits to recover the MIB data using these steps:

• Rate Recovery: Combines repeated soft bits then performs scaling and quantization
• Polar Decode + CRC: Performs polar decoding to get the message bits and CRC decoding to check

for errors
• MIB Message Parse: Interprets the decoded message bits to produce the MIB parameter outputs

Generate a Test Waveform

This section shows how to use the MATLAB reference functions to search for SSBs in a waveform.

Use the nrhdlexamples.generateSSBurstWaveform function to generate an SS burst waveform.
This function is based on the “Synchronization Signal Blocks and Bursts” (5G Toolbox) example. The
burst has these parameters.

• SSB pattern is case B
• Subcarrier spacing is 30 kHz
• NCellID is 249
• Active SSBs within the burst is 8

rng('default');
[rxWaveform,txGrid,txMIB] = nrhdlexamples.generateSSBurstWaveform();

Plot the resource grid of the burst waveform. The amplitude of each resource element is indicated by
its color. The plot shows eight SSBs. The SSBs are generated with different power levels to model
what a UE typically receives.
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figure(1); clf;
imagesc(abs(txGrid));
colorbar;
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('SS Burst - Block Pattern Case B');

Detect SSBs

Use the nrhdlexamples.ssbDetect function to find SSBs in the waveform by searching for PSS
symbols. This example calls the function with a coarse carrier frequency offset estimate of zero and a
subcarrier spacing of 30. The function corrects the coarse frequency offset and measures the residual
fine frequency offset of each SSB. Frequency offset input and output are give in Hz. The function
returns a list of detected PSS symbols as a structure array. Display the structure array contents by
converting it to a table.

FoCoarse = 0;
scs = 30;
[pssList,diagnostics] = nrhdlexamples.ssbDetect(rxWaveform,FoCoarse,scs);

disp(struct2table(pssList));

    NCellID2    timingOffset    pssCorrelation    pssEnergy    frequencyOffset
    ________    ____________    ______________    _________    _______________

       0               6608        0.69435         0.70703             7      
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       0              15376         1.3933          1.4119           -51      
       0              32944        0.43994         0.44712          -207      
       0              41712         7.1226          7.2182          -154      
       0              68048        0.84535         0.88463           204      
       0              76816         2.1805           2.245           140      
       0              94384         0.2794         0.28375           488      
       0         1.0315e+05         0.8552         0.89668           132      

The nrhdlexamples.ssbDetect function also returns a structure containing diagnostic signals.
Use this output to plot the PSS correlation results. Each peak in the correlator output shown
corresponds to an entry in the PSS list.

figure(2); clf;
nrhdlexamples.plotUtils.PSSCorrelation(diagnostics,'PSS Correlation');

Use the nrhdlexamples.ssbDetect function to OFDM-demodulate one of the SSBs and attempt
SSS detection. For this operation, call the function with an optional 4th argument that specifies the
timing offset and NCellID2 of the desired SSB. This example chooses the PSS with the highest
correlation metric, however you can choose any of the detected SSBs. Correct the frequency offset by
passing in the sum of the coarse and fine frequency offset estimates.

[~,maxCorrIdx] = max(vertcat(pssList.pssCorrelation));
chosenPSS = pssList(maxCorrIdx);
FoFine = chosenPSS.frequencyOffset;
FoEst = FoCoarse + FoFine;
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[ssBlockInfo,ssGrid,diagnostics] = nrhdlexamples.ssbDetect(rxWaveform,FoEst,scs,chosenPSS);

In demodulation mode, the function returns three outputs instead of two. The ssBlockInfo
structure contains further details of the SSB, such as the SSS correlation strength and the overall cell
ID. The ssGrid output is a matrix containing the demodulated OFDM symbols. Display the SSB info
to confirm that the cell ID is correctly decoded.

disp(ssBlockInfo);

           NCellID2: 0
       timingOffset: 41712
     pssCorrelation: 7.1219
          pssEnergy: 7.2185
           NCellID1: 83
     sssCorrelation: 7.1383
          sssEnergy: 7.1743
            NCellID: 249
    frequencyOffset: 0

Display the resulting resource grid.

figure(3); clf;
imagesc(abs(ssGrid));
colorbar;
axis xy;
xlabel('OFDM symbol');
ylabel('Subcarrier');
title('Rx Resource Grid');
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The diagnostics output includes SSS correlation results for all 336 possible sequences. Plot the
SSS correlation results.

figure(4); clf;
nrhdlexamples.plotUtils.SSSCorrelation(diagnostics,'SSS Correlation')
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Search for Cells

This section shows how to use the nrhdlexamples.cellSearch function to search for and
demodulate SSBs when the frequency offset and subcarrier spacing are not known. As described
previously, the nrhdlexamples.cellSearch function builds on the nrhdlexamples.ssbDetect
function by adding a search controller that looks for SSBs at different subcarrier spacings and
frequency offsets.

Apply a frequency offset to test the coarse and fine frequency recovery functionality.

Fo           = 10000;
t            = (0:length(rxWaveform)-1).'/61.44e6;
rxWaveformFo = rxWaveform .* exp(1i*2*pi*Fo*t);

Define the frequency range endpoints and subcarrier spacing search space and call the
nrhdlexamples.cellSearch function. The function displays information on the search progress as
it runs. The frequency range endpoints must be multiples of half the maximum subcarrier spacing.

frequencyRange = [-30 30];
subcarrierSpacings = [15 30];

[ssBlockInfo,ssGrid] = nrhdlexamples.cellSearch(rxWaveformFo,frequencyRange,subcarrierSpacings,struct(...
    'DisplayPlots',false,...
    'DisplayCommandWindowOutput',true));

Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -30 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -22.5 kHz)
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Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -15 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: -7.5 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: 0 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: 7.5 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: 15 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: 22.5 kHz)
Searching for PSS (subcarrierSpacing: 15 kHz, frequencyOffset: 30 kHz)
Searching for PSS (subcarrierSpacing: 30 kHz, frequencyOffset: -30 kHz)
Searching for PSS (subcarrierSpacing: 30 kHz, frequencyOffset: -15 kHz)
Searching for PSS (subcarrierSpacing: 30 kHz, frequencyOffset: 0 kHz) ... PSS detected.
Searching for PSS (subcarrierSpacing: 30 kHz, frequencyOffset: 15 kHz) ... PSS detected.
Found PSS with (subcarrierSpacing: 30 kHz, frequencyOffsetEstimate: 9846 Hz)
Correcting frequency offset and searching for PSS again.
Found the following PSS symbols:

    NCellID2    timingOffset    pssCorrelation    pssEnergy    frequencyOffset
    ________    ____________    ______________    _________    _______________

       0               6608        0.69422         0.70705           161      
       0              15376         1.3933           1.412           103      
       0              32944        0.43981         0.44714           -53      
       0              41712         7.1219          7.2185             0      
       0              68048        0.84567         0.88466           358      
       0              76816         2.1812          2.2451           294      
       0              94384         0.2793         0.28376           642      
       0         1.0315e+05        0.85524         0.89673           286      

Strongest PSS:
           NCellID2: 0
       timingOffset: 41712
     pssCorrelation: 7.1219
          pssEnergy: 7.2185
    frequencyOffset: 0

Attempting to reacquire strongest PSS and demodulate the corresponding SS block.
             NCellID2: 0
         timingOffset: 41712
       pssCorrelation: 7.1219
            pssEnergy: 7.2185
             NCellID1: 83
       sssCorrelation: 7.1383
            sssEnergy: 7.1743
              NCellID: 249
      frequencyOffset: 9846
    subcarrierSpacing: 30

Cell search summary:
  Subcarrier spacing: 30 kHz
    Frequency offset: 9846 Hz
       Timing offset: 41712
             NCellID: 249

As shown in the summary, the receiver returned the correct subcarrier spacing of 30 kHz, a cell ID of
249, and the measured frequency offset is close to the expected value of 10 kHz.
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Decode SSB

Use the nrhdlexamples.ssbDecode function to decode the resource grid and recover the MIB. The
nrhdlexamples.ssbDecode function is based on the BCH decoding stages of the “NR Cell Search
and MIB and SIB1 Recovery” (5G Toolbox) example.

[mibInfo,decodeDiags] = nrhdlexamples.ssbDecode(ssGrid,ssBlockInfo.NCellID,8);

Plot the correlation peaks for the DMRS search. DMRS search is performed to determine ibar_ssb
and the SSB index.

figure(5); clf;
plot(0:7,decodeDiags.dmrsCorr);
title('DMRS Search Correlation');
xlabel('ibar ssb');
ylabel('Correlation strength');

Plot the PBCH QPSK constellation after phase equalization.

figure(6); clf;
plot(decodeDiags.qpskSymb,'o');
title('PBCH Symbol Constellation');
xlabel('In-phase');
ylabel('Quadrature');
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Display the decoded information and compare the transmitted and received MIB structures. These
result show that the information was successfully decoded.

disp(['BCH CRC: ' num2str(mibInfo.err) newline]);

disp('Decoded information');
disp(mibInfo);

disp('Decoded MIB');
disp(mibInfo.mib);

disp('Expected MIB');
disp(txMIB);

BCH CRC: 0

Decoded information
    pbchPayload: 218103952
       ssbIndex: 3
            hrf: 0
            err: 0
            mib: [1x1 struct]

Decoded MIB
                     NFrame: 105
    SubcarrierSpacingCommon: 30
                      k_SSB: 0
          DMRSTypeAPosition: 2
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            PDCCHConfigSIB1: 0
                 CellBarred: 0
       IntraFreqReselection: 0

Expected MIB
                     NFrame: 105
    SubcarrierSpacingCommon: 30
                      k_SSB: 0
          DMRSTypeAPosition: 2
            PDCCHConfigSIB1: 0
                 CellBarred: 0
       IntraFreqReselection: 0

See Also

Related Examples
• “NR HDL Cell Search” on page 5-30
• “NR HDL MIB Recovery” on page 5-2
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NR HDL Cell Search
This example shows the design of a 5G NR cell search subsystem optimized for HDL code generation
and hardware implementation.

Introduction

The Simulink model described in this example is an HDL optimized implementation of a
synchronization signal block (SSB) detector for 5G NR cell search. This example is one of a related
set which show the workflow for designing and deploying a 5G NR cell search and MIB recovery
algorithm to hardware. The figure shows the complete set of examples and the current example
within the workflow. For more details on the overall algorithm and workflow, see the “NR HDL Cell
Search and MIB Recovery MATLAB Reference” on page 5-14 example. The “5G NR MIB Recovery
Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for Xilinx Zynq-
Based Radio) example shows how to deploy the algorithm to an SoC. For a general description of how
MATLAB and Simulink can be used together to develop deployable models, see “Wireless
Communications Design for FPGAs and ASICs”.

A block diagram of the SSB detector is shown in the figure. This performs all of the high speed signal
processing tasks associated with the cell search algorithm therefore is well suited for FPGA or ASIC
implementation. The SSB detector searches for SSBs in time at a given frequency offset and
subcarrier spacing. It is designed to be used as part of a larger system that implements carrier
frequency offset recovery and subcarrier spacing detection. A controller must be used co-ordinate the
overall cell search as shown in the “5G NR MIB Recovery Using Analog Devices AD9361/AD9364”
(Communications Toolbox Support Package for Xilinx Zynq-Based Radio) example.
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The SSB detector performs primary synchronization sequence (PSS) search, orthogonal frequency
division multiplexing (OFDM) demodulation, and secondary synchronization sequence (SSS) search.
It also includes a digital down converter (DDC) for correcting frequency offsets in the received signal.

File Structure

This example uses these files.

• nrhdlexamples.runSSBDetectionModel: This script runs the nrhdlSSBDetection model by
calling the nrhdlexamples.ssbDetectSimulink function and verifies the model by using 5G
Toolbox functions and the “NR HDL Cell Search and MIB Recovery MATLAB Reference” on page
5-14.

• nrhdlexamples.ssbDetectSimulink: This function runs the Simulink model and has the same
input and output arguments as the nrhdlexamples.ssbDetect function from the MATLAB
reference.

• nrhdlSSBDetection: This top-level Simulink model is a lightweight wrapper that instantiates
the nrhdlSSBDetectionCore model reference.

• nrhdlSSBDetectionCore: This model reference implements the SSB detection algorithm.

This example also uses helper functions from the nrhdlexamples package. The Simulink models and
the nrhdlexamples package are on the MATLAB path. To open one of the models, enter its name at
the MATLAB command prompt.

nrhdlSSBDetection

To open a function or script from the nrhdlexamples package, use the edit command.

edit nrhdlexamples.runSSBDetectionModel

NR HDL Cell Search Model

This figure shows the nrhdlSSBDetection model. The top level of the model reads signals from the
MATLAB base workspace, passes them to the SS Block Detection subsystem, and writes the outputs
back to the workspace. To run the model, call the nrhdlexamples.runSSBDetectionModel script
in MATLAB.
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SS Block Detection Interface

The SS Block Detection subsystem contains a Model block that references the
nrhdlSSBDetectionCore model. This section describes the inputs and outputs of that model.
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Inputs

• dataIn: 14-bit signed complex-valued signal, sampled at 61.44 Msps.
• validIn: 1-bit control signal to validate dataIn.
• frequencyOffset: 32-bit signed value specifying the frequency offset to be corrected. This signal is

connected to an NCO with a 32-bit accumulator. Use this equation to convert the value to Hz:
frequencyOffset_Hz = frequencyOffset * 61.44e6 / 2^32;

• subcarrierSpacing: 1-bit unsigned value specifying the subcarrier spacing. Set this signal to 0 to
select 15kHz, or 1 to select 30kHz.

• mode: 1-bit unsigned value specifying the operation mode. Set this signal to 0 for search mode, or
1 for demod mode.
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• timingOffset: 21-bit unsigned value specifying the timing offset of the start of the SSB to be
demodulated. Specify the timing offset in samples at 61.44 Msps, from 0 to 1228799. This
parameter applies only for demod mode.

• NCellID2: 2-bit unsigned value specifying the PSS (0, 1, or 2) of the SSB to be demodulated. This
parameter applies only for demod mode.

• start: 1-bit control signal used to start a search or demodulation operation. To start an operation,
set frequencyOffset, subcarrierSpacing, mode, timingOffset, and NCellID2 to the desired values
and set start to 1 (true) for one or more cycles. If an operation is already in progress, that
operation is cancelled when start is set to 1 (true). The new operation begins when start is
returned to 0 (false).

Outputs

• status: 4-bit unsigned value that indicates the progress of the current operation. See the next
section for the possible values of this signal.

• pssNCellID2: 2-bit unsigned value that is the PSS (0, 1 or 2) of the detected SSB.
• pssTimingOffset: 21-bit unsigned value that is the timing offset of the detected SSB. The timing
offset is in samples at 61.44 Msp from 0 to 1228799.

• pssFrequencyOffset: 32-bit signed value that is the frequency offset of the detected SSB. This
signal has the same units as the frequencyOffset input.

• pssCorrelation: 32-bit unsigned value that is the strength of the PSS correlation.
• pssThreshold: 32-bit unsigned value that is the threshold value when PSS was detected.
• NCellID: 10-bit unsigned value that is the cell ID of the demodulated SSB. This value is returned

only in demod mode.
• sssCorrelation: 32-bit unsigned value that is the SSS correlation strength. This signal is returned

only in demod mode.
• sssThreshold: 32-bit unsigned value that is the SSS threshold. This value is returned only in

demod mode.
• reportValid: 1-bit control signal. In search mode, this signal validates pssNCellID2,
pssTimingOffset, pssFrequencyOffset, pssCorrelation, and pssThreshold for each PSS that is
detected. In demod mode, this signal also validates NCellID, sssCorrelation, and sssThreshold. In
demod mode, sssCorrelation and sssThreshold are only valid if the specified SSB was found using
its PSS, and NCellID is only valid if the SSS was detected.

• gridData: 16-bit signed complex-values that are the resource grid data. The receiver returns all
four symbols of the SSB resource grid. Values are returned one resource element at a time. The
resource grid is only returned in demod mode.

• gridValid: 1-bit control signal that validates the gridData output. Data is only returned if the
specified SSB was found using its PSS. This signal is returned only in demod mode.

• diagnostics: Bus containing diagnostic signals.

Status Signal States

• 0 Idle.
• 1 Search mode -- Searching for PSS.
• 2 Search mode -- Operation complete, no PSS found.
• 3 Search mode -- Operation complete, found one or more PSSs.
• 4 Demod mode -- Waiting for specified PSS timing offset.
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• 5 Demod mode -- Operation complete, PSS not found.
• 6 Demod mode -- Found specified PSS. Demodulating the resource grid and looking for SSS.
• 7 Demod mode -- Operation complete, no SSS found. Returned demodulated resource grid.
• 8 Demod mode -- Operation complete, found SSS. Returned demodulated resource grid.

SSB Detection Model Reference Structure

This diagram shows the top level of the nrhdlSSBDetectionCore model. The input signal (dataIn)
is 14-bit signed complex-valued data sampled at 61.44 Msps. The Input Scaling subsystem increases
the word length to 16 bits by sign-extending the values by one bit and adding one LSB. This increase
provides headroom and extra accuracy for subsequent processing stages. The DDC corrects the
frequency offset and decimates the samples by eight (to 7.68 Msps) by using halfband filters. The
output of the DDC is the input to the SS Block Core subsystem. The Detection Status block keeps
track of progress and generates the status output.

SS Block Core Subsystem Structure

The SS Block Core subsystem performs SSB detection and demodulation. Its internal sampling rate
varies depending on the subcarrier spacing (SCS). The subsystem uses 7.68 Msps for 30kHz SCS and
3.84 Msps for 15kHz SCS. The subcarrier spacing selection logic on the left is responsible for
changing the sampling rate. The rate can change only when a new operation is triggered by the start
input.

The receiver has an internal timing reference system that keeps track of time by using counters at
key points in the datapath. The timing reference counts 20ms periods - the assumed SSB periodicity
for cell search as defined by the 5G NR standard. Time is measured in samples at 61.44 Msps modulo
1228800 to create the 20ms period. Since the actual sampling rate is either 7.84 Msps or 3.84 Msps,
the timing reference counters increment by either 8 or 16, respectively, for each sample. When a new
operation is triggered by the start input, the Start Controller records the start time and passes the
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time to the other timing references in the model. This signal tells the other timing references when a
new subcarrier spacing and corresponding sampling rate applies. The other timing references wait
until the start time before changing their increment. This design is possible only because hardware
latency means the other timing references lag behind the Start Controller. This architecture enables
the receiver to keep track of time consistently, even when a sampling rate change occurs.

The SS Block Core subsystem contains these main subsystems.

• Subcarrier Spacing Selection: Converts the input to two synchronized sample streams, one at 7.68
Msps and one at 3.84 Msps, and selects which stream to pass to subsequent processing stages
according to the subcarrier spacing.

• PSS Detection: Searches for PSS symbols in the received signal. The next section describes this
subsystem in more detail.

• Cyclic Prefix Correlation: Computes cyclic prefix (CP) correlation values. Each result is averaged
across the last four OFDM symbols.

• CP Correlation to Frequency: Converts CP correlation values to fine frequency offset estimates.
• PSS and CP Alignment: Matches a CP-based frequency estimate with each PSS symbol detection

instance. This alignment is necessary because the frequency estimate for a given PSS detection
instance is available only at the end of the corresponding SSB.

• PSS Info Serialization: If PSS is detected on more than one PSS correlator output at the same
timing offset, this block serializes the results so that they are returned from the detector one at a
time.

• OFDM Data Synchronization: Synchronizes the OFDM demodulator input with the output of the
PSS detector. This synchronization enables the PSS detector to trigger the OFDM demodulation
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process at the correct time. The synchronized data is one OFDM symbol behind the PSS correlator
as the peak detection occurs at the end of the first OFDM symbol to be demodulated.

• OFDM Demodulation: OFDM-demodulates `all four symbols of the specified SSB.
• SSS Detection: Extracts the SSS resource elements from the OFDM demodulator output and

correlates them with all 336 possible sequences to determine the cell ID.
• Create report: Aligns all of the parameters corresponding to one SSB detection, so that they are

all valid at the same time.

Simulation Setup

This block diagram shows the simulation setup implemented by the
nrhdlexamples.runSSBDetectionModel function. The function uses 5G Toolbox functions to
generate a test waveform that has these parameters.

• SSB pattern is case B
• Subcarrier spacing is 30
• NCellID is 249
• Active SSBs within the burst is 8
• Frequency offset is 10 kHz
• Channel is modeled with AWGN

The function passes the test waveform to the MATLAB and Simulink implementations of the SSB
detector in search mode and then in demodulation mode. Key diagnostic signals from each detector
are compared in terms of their relative mean-squared error (MSE) and the final outputs are
compared. The function calls 5G Toolbox functions to decode the BCH, recover the MIB, and measure
the EVM of the resource grid returned by the Simulink implementation.

To run the simulation, call the nrhdlexamples.runSSBDetectionModel function. This diagram
shows the actions performed by the script.

Search Mode Simulation

The simulation starts by generating a test waveform as previously described. The plot shows the
combined resource grid of all eight SSBs in the transmitted waveform.
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In search mode, the detector looks for PSS symbols within a 20 ms time window, which begins after a
pulse on the start input triggers the search operation. If no PSS symbols are found after 20 ms, the
detector sets the status output to 2 - indicating the search has failed. In this example, the detector
finds all eight SSBs. The status output is set to 1 during the search, and a report is returned for each
SSB by asserting the reportValid signal. View these signals by opening the Simulink Logic Analyzer
tool after the search mode simulation is complete. The simulation runs for 5 ms. If the simulation ran
for more than 20 ms, then the status output is eventually set to 3 - indicating the search has
succeeded.
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The script generates a plot that shows the PSS correlation outputs and the PSS detection threshold.
Tables are displayed at the command line showing the parameters of each SSB. The final table shows
the MSE between the MATLAB and Simulink implementations for each correlator output and for the
detection threshold. These results show that the MATLAB and Simulink implementations match very
closely. The small differences between the two implementations are due to quantization errors. These
errors occur because the MATLAB reference uses floating-point data types, and the Simulink model
uses fixed-point data types.
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Demodulation Mode Simulation

In demodulation mode, the detector recovers the specified SSB by searching for its PSS, OFDM-
demodulating the resource grid, and searching for the SSS within the appropriate resource elements.
If the PSS is not found at the specified timing offset, the detector sets the status output to 5 and stops
searching.

In this example, the detector recovers the specified SSB. The test bench in the
nrhdlexamples.runSSBDetectionModel function chooses the SSB with the strongest PSS from
the initial search. The frequency offset measurement from this SSB is used as a frequency offset
estimate and passed back into the detector. The Simulink Logic Analyzer tool shows the detector
output as it progresses through these steps.

1 The detector sets status output to 4 while it waits for the specified timing offset and searches for
the specified PSS.

2 PSS is found. The detector sets the status output to 6 - the detector is now searching for the SSS
within the resource grid. The four demodulated OFDM symbols are output, indicated by asserting
gridValid.

3 After the SSS is determined, the detector asserts reportValid to indicate that all of the PSS and
SSS parameters, including NCellID, are valid. The status output changes to 8, to indicate that the
operation is complete and SSS and cell ID are ready.

If the detector is unable to determine the SSS, then it sets the status output to 7.
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These plots show the PSS and SSS correlation signals for both detector implementations. The PSS
correlation levels are stronger in demod mode than in search mode because the frequency offset is
corrected. The final reports are displayed at the command line, showing that both detectors returned
similar parameters and determined the cell ID is 249. The table shows the relative MSE for the PSS
and SSS correlation signals and the resource grid.
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Resource Grid Verification

The plot shows the demodulated resource grids returned by MATLAB and Simulink.

As a final verification step, the script decodes the BCH from the Simulink output by calling
nrhdlexamples.ssbDecode. The command line output shows that the CRC check passed, and
confirms that the MIB content matches that of the transmitted waveform.

HDL Code Generation and Implementation Results

To generate the HDL code for this example, you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL test bench for the
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nrhdlSSBDetection/SS Block Detection subsystem. The resulting HDL code was synthesized
for a Xilinx® Zynq®-7000 ZC706 evaluation board. The table shows the post place and route
resource utilization results. The design meets timing with a clock frequency of 230 MHz.

       Resource        Usage
    _______________    _____

    Slice Registers    79357
    Slice LUTs         37659
    RAMB18                 7
    RAMB36                 1
    DSP48                208

See Also

Related Examples
• “NR HDL Cell Search and MIB Recovery MATLAB Reference” on page 5-14
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LTE HDL Cell Search
This example shows the design of a LTE cell search and selection system optimized for HDL code
generation and hardware implementation.

Introduction

Cell search and selection is the first step taken by User Equipment (UE) in attempting to gain access
to an LTE network. The cell search and selection procedure involves detecting candidate eNodeB
signals and then selecting one to synchronize to. This includes determining the chosen eNodeB's
physical layer cell identity (cell ID) and duplex mode. Additionally, the UE acquires frequency and
timing synchronization during this process. Once this procedure has been completed, the UE can
demodulate the OFDM signal transmitted by the cell and recover its Master Information Block (MIB).
A MIB Recovery model with HDL code generation capability, which reuses the cell search and
selection functionality shown here, is presented in the “LTE HDL MIB Recovery” on page 5-80.

The functionality in the present example is based on the cell search functionality of the LTE Toolbox
“Cell Search, MIB and SIB1 Recovery” (LTE Toolbox). However, the algorithms have been optimized
for HDL code generation. LTE Toolbox was used extensively in the development of the present
example. The HDL model described here performs the following functions:

• Frequency recovery
• Primary and secondary synchronization signal detection
• OFDM demodulation

The frequency recovery algorithm within the HDL model can only correct offsets fewer than
+-7.5kHz. Large frequency offset recovery greater than +-7.5kHz is possible by driving the input and
monitoring the outputs with an external controller. A demonstration of large frequency offset
correction can be found in the “LTE MIB Recovery and Cell Scanner Using Analog Devices AD9361/
AD9364” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio) example.

Once the model has completed the cell search and selection procedure, it outputs the cell ID, duplex
mode and unequalized resource grid of the cell. This functionality is shown below. The model
supports downlink signals with 15 kHz subcarrier spacing and normal cyclic prefix length. Frequency
Division Duplex (FDD) and Time Division Duplex (TDD) modes are both supported. The duplex mode
is automatically detected.

5 Reference Applications

5-46



The LTE standard provides two physical signals to aid the cell search process. These are the Primary
Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS). Refer to Appendix A
for more information on LTE downlink synchronization signals.

Example Structure

The model consists of 5 files:

• ltehdlCellSearch.slx: This is the top level of the model, and acts as a test bench for
ltehdlDownlinkSyncDemod.slx.

• ltehdlDownlinkSyncDemod.slx: Model reference which implements the cell search,
synchronization, and OFDM demodulation functionality.

• ltehdlCellSearch_init.m: MATLAB® script for generating stimulus.
• ltehdlCellSearch_analyze.m: MATLAB script for analyzing output and displaying plots at the

end of the simulation.
• ltehdlCellSearchTools.m: MATLAB class containing helper methods for analyzing and

plotting results.

Note: ltehdlDownlinkSyncDemod.slx does not appear in the example working folder as it is
shared with other examples. The file is on the MATLAB path and can be opened by entering
ltehdlDownlinkSyncDemod at the MATLAB command line.

Model Architecture

The structure of the cell search and selection subsystem is shown below. The input is complex 16-bit
data sampled at 30.72 Msps. The signal is passed to two signal processing data paths; one at 1.92
Msps and one at 30.72 Msps. Frequency recovery and PSS detection are performed on the 1.92 Msps
data path. This sampling rate is used for two reasons. First, the cell bandwidth is not known at this
stage therefore the smallest LTE bandwidth of 1.4 MHz is assumed for frequency recovery. This
approach works irrespective of the actual cell bandwidth. Second, the PSS and SSS only occupy the
six central resource blocks (1.4 MHz). Therefore, detection can be performed effectively at 1.92 Msps
and resource sharing techniques can be used to optimize the hardware implementation.

The following steps describe the receiver operation.

1 The frequency estimation block estimates the frequency offset over a 10 ms period.
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2 The frequency correction blocks are then activated on both the 1.92 Msps and 30.72 Msps
sample streams.

3 PSS detection begins immediately after the frequency estimation stage has been completed.
4 SSS detection begins when PSS detection detects a valid PSS signal. If a valid SSS is found, this

means that a valid cell has been detected and the duplex mode is now known.
5 The cell ID and frame start position are computed.
6 On the next frame boundary, the receiver starts to extract OFDM symbols from the 30.72 Msps

sample stream. Each symbol is passed through a 2048-point FFT to perform OFDM
demodulation.

Appendix B provides more details of the cell search and selection algorithm used in this example.

Cell Search Simulink Model

The top level of ltehdlCellSearch.slx is shown below. This model references
ltehdlDownlinkSyncDemod.slx. ltehdlCellSearch_init.m is called by the InitFcn callback
and ltehdlCellSearch_analyze.m is called by the StopFcn callback. The model uses a Stop sink
to terminate the simulation when either (i) the subframeNum output is 5 or (ii) cellSearchDone is
asserted true and no cell is detected. HDL code can be generated for the Cell Search HDL
subsystem.

The Cell Search HDL subsystem is primarily a wrapper for the ltehdlDownlinkSyncDemod model.
It contains a Model block (Downlink Sync Demod) which references
ltehdlDownlinkSyncDemod.slx, and a Diagnostics To Workspace subsystem, which logs all of
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the diagnostic outputs. The diagnostic outputs are used by ltehdlCellSearch_analyze.m to
generate plots showing the internal operation.

Downlink Synchronization and Demodulation Model Reference

The ltehdlDownlinkSyncDemod model reference implements all of the cell search, synchronization
and OFDM demodulation functionality. Appendix B details the cell search and selection algorithm
implemented by this model. The top level of ltehdlDownlinkSyncDemod closely matches the
architecture which was presented earlier.

Model Inputs:

• dataIn: Complex signed 16-bit data carrying the baseband input signal.
• validIn: Boolean, indicating whether dataIn is valid.
• start: Boolean. Assert this input true for one cycle at any time to initiate a cell search. This is

referred to as a start command.

Model Outputs:

• NCellID: 9-bit cell ID of the detected eNodeB.
• TDDMode: Boolean, indicating the duplex mode of the detected cell: false for FDD, true for

TDD.
• timingOffset: 19-bit timing offset. Indicates the number of samples from the first sample to enter

the receiver to the first sample of the first full frame, from 0 to 307199.
• freqEst: 14-bit signed frequency offset estimate. Multiply this output by 15e3 / 2^14 in order to

convert to Hz as shown in the LTEHDLCellSearch model.
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• cellDetected: Boolean, indicating that a cell has been found.
• cellSearchDone: Boolean, indicating that the cell search has completed. If a cell is found,

cellDetected and cellSearchDone will be asserted true at the same time. If no cell is found,
cellDetected will remain false and cellSearchDone will be asserted true within 100 ms of the
start command being issued. The time taken for cellSearchDone to be asserted depends on how
many attempts are taken to detect PSS and SSS. See Appendix B for more details.

• subframeNum: 4-bit unsigned integer. Indicates which subframe is currently being passed out of
the gridData port, from 0 to 9.

• gridData: 16-bit data carrying the demodulated resource grid.
• gridValid: Boolean, indicating whether gridData is valid.
• diagnostics: Bus signal, carrying various diagnostic outputs.

ltehdlDownlinkSyncDemod uses two Wireless HDL Toolbox™ example functions during
initialization: ltehdlDefineReceiverBuses and ltehdlDownlinkSyncDemodConstants.
ltehdlDefineReceiverBuses is shared with other Wireless HDL Toolbox examples, and defines a
set of Simulink buses. This function is called in the InitFcn of ltehdlDownlinkSyncDemod. Only
the detectorDiagnosticsBus output of the function is used here. The bus object is stored in the
Base Workspace, making it available to both the ltehdlDownlinkSyncDemod and ltehdlCellSearch
models.

[~,~,~,~,detectorDiagnosticsBus] = ltehdlDefineReceiverBuses();

The model relies on precomputed constants and lookup tables stored in a structure called
cellDetectorConfig. This structure is generated by the ltehdlDownlinkSyncDemodConstants
function and is only used inside the ltehdlDownlinkSyncDemod model reference. Therefore, it is
defined in the Model Workspace rather than the Base Workspace. Use the Model Explorer to view the
Model Workspace, which contains the following initialization code.

cellDetectorConfig = ltehdlDownlinkSyncDemodConstants(30.72e6);

The internal structure of ltehdlDownlinkSyncDemod is shown.
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The Decimation Filters subsystem resamples the input data from 30.72 Msps to 1.92 Msps. It
consists of CIC decimation, CIC gain compensation, CIC droop compensation, and transient removal.
The filter chain is designed to have a group delay which is equal to an integer number of samples at
1.92 Msps. The Transient Removal block removes the initial transient due to this group delay from
the sample stream. This is important because the frame timing offset is measured on the 1.92 Msps
stream and then used to recover timing on the 30.72 Msps stream. Removing the initial transient
from the decimation filter chain simplifies the logic which transfers the timing information.

The FrequencyEstimation subsystem uses the cyclic prefix to estimate the frequency offset of the
incoming signal. Every 960 samples, the AngleAtMaximum subsystem selects the strongest
correlation peak and records its phase angle. The AngleFilter subsystem implements an averaging
filter with a window duration of 10 ms. The resulting phase angle serves as a frequency estimate.
Appendix B provides more information on how the cyclic prefix can be used to estimate the frequency
offset.

The Sync Signal Search subsystem implements PSS and SSS detection. Timing is crucial in this part
of the design, because the SSS Searcher uses the frame timing information from the PSS Searcher
to identify SSS search locations. The PSS Searcher provides a validOut signal which is used by the
Stream Synchronizer block to delay the input stream and compensate for the PSS Searcher
pipeline latency. Synchronizing the input stream to the PSS Searcher outputs simplifies the design of
the SSS Searcher.
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The PSS Searcher is made up of two subsystems: the Correlators and the Max Peak Searcher.
Together, these subsystems implement the PSS search algorithm described in Appendix B.

5 Reference Applications

5-52



The Correlators subsystem contains a matched filter for each of the three PSS sequences, and a set
of subsystems for determining the threshold. A lower limit is applied to the threshold to prevent small
signals triggering false alarms. The PSS correlators and the threshold generation logic have different
pipeline delays, therefore, a stream synchronizer is used to re-align their outputs.

Once a cell search is underway, the SSS Searcher continually stores samples in a circular buffer.
Once PSS is detected, it continues to load samples into the buffer until the SSS search location has
been reached and stored. The SSS search location is computed from the PSS timing information
provided by the PSSEndTimingOffset signal. Next, the FDD location samples are read from the
buffer, passed through a 128-point FFT, and the Max Likelihood SSS subsystem computes the
correlation metrics and threshold. The same operation is then applied to the TDD location samples.
The Max Likelihood SSS subsystem chooses the maximum correlation metric which exceeded the
threshold and determines the duplex mode and frame timing. Finally, the frame timing offset is
computed.
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Initialization and Analysis Scripts

Initialization Script

ltehdlCellSearch_init.m is called in the InitFcn callback of ltehdlCellSearch.slx.
Stimulus can either be loaded from a file containing a captured off-the-air waveform, or generated
with LTE Toolbox.

% ltehdlCellSearch model initialization script
% Generates workspace variables needed by the ltehdlCellSearch model.

SamplingRate = 30.72e6;
simParams.Ts = 1/SamplingRate;

% Choose to load a captured off-the-air waveform from a file,
% or generate a test waveform with LTE Toolbox.
loadfromfile = true;

if loadfromfile
    % Load captured off-the-air waveform.
    load('eNodeBWaveform.mat');
    dataIn = resample(rxWaveform,SamplingRate,fs);
else
    % Generate a test waveform with LTE Toolbox.
    dataIn = hGenerateDLRXWaveform();
end

% Scale signal level to be in the range -1 to +1.
dataIn = 0.95 * dataIn / max(abs(dataIn));

% Start 1 subframe into the waveform (chosen arbitrarily).
startIn      = false(length(dataIn),1);
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startIn(1e-3*SamplingRate)  = true;

% Configure PSS and SSS attempts
PSSAttempts = 2;
SSSAttempts = 4;

% Determine stop time.
simParams.stopTime = (length(dataIn)-1)/SamplingRate;

Analysis Script

ltehdlCellSearch_analyze.m is called in the StopFcn callback of ltehdlCellSearch.slx.
This script relies heavily on ltehdlCellSearchTools.m to analyze the model output and display
the plots.

% ltehdlCellSearch model analysis script
% Post-processes model outputs and generates plots.

% Check if any simulation output exists to analyze.
if exist('out','var') && ~isempty(out.PSSDetected)
    
    % Post-process the model output to extract key cell parameters,
    % diganostics and signals.
    
    [signals, report] = ltehdlCellSearchTools.processOutput(dataIn,startIn,out);
    
    % Plot results
    
    ltehdlCellSearchTools.figure('Input waveform and search stages'); clf;
    ltehdlCellSearchTools.plotSearchStates(signals,report);
    
    ltehdlCellSearchTools.figure('Frequency estimation'); clf;
    ltehdlCellSearchTools.plotFrequencyEstimate(signals,report);
    
    ltehdlCellSearchTools.figure('PSS search'); clf;
    ltehdlCellSearchTools.plotPSSCorrelation(signals,report);
    
    ltehdlCellSearchTools.figure('SSS search');
    ltehdlCellSearchTools.plotSSSCorrelation(signals,report);

end

Analysis Tools Class

This class contains helper functions for analyzing and plotting model output. Refer to
ltehdlCellSearchTools.m for more information.

Simulation Output and Analysis

To execute the simulation, use the run button in the ltehdlCellSearch model. Simulink will
automatically call ltehdlCellSearch_init and ltehdlCellSearch_analyze via the InitFcn and
StopFcn callbacks respectively. Note that it will take a while to build the
ltehdlDownlinkSyncDemod model reference on the first run. The simulation generates two main
types of output: (i) Display blocks at the top level of the ltehdlCellSearch block diagram show key
detection parameters, and (ii) four plots are generated at the end of the simulation.
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The NCellID, TDDMode, timingOffset, freqEst, cellDetected, and cellSearchDone outputs all have
associated Display blocks. Their values are shown below at the end of a simulation which used the
captured off-the-air waveform (eNodeBWaveform.mat) as stimulus.

The Input waveform and search stages plot shows:

• The magnitude of the input waveform vs time.
• The time window during which frequency estimation occurs.
• The PSS search window for each attempt (one in this case) and the location of the detected PSS.
• The SSS search windows for TDD and FDD for each attempt (one in this case), and the location of

the detected SSS.
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The Frequency estimation plot shows the output of the frequency estimator vs time. At the end of
the 10 ms frequency estimation time window, the frequency estimate is loaded into a register and
used to correct the frequency offset. This value is also shown on the plot. In this case the frequency
offset is just below 500 Hz, which is well within the -7.5 kHz to +7.5 kHz operating range of the
frequency recovery algorithm.

The cell ID is made up of two components, NCellID1 and NCellID2, where NCellID1 is the SSS
sequence number, and NCellID2 is the PSS sequence number (See Appendix A). The PSS search
plot shows all three PSS correlator outputs, and the PSS threshold. PSS was detected approximately
17 ms into the waveform on PSS #1, therefore NCellID2 = 1.
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The SSS search plot shows the correlation metrics for the successful SSS detection attempt, and the
SSS threshold. As previously discussed, the SSS detection algorithm determines the duplex mode and
half frame position, as well as the cell ID. As a result, 4*168 = 672 correlation metrics are computed
during each attempt. The correlation metrics are shown in the following order along the x-axis:

• FDD1: metrics at the FDD location for SSS sequences corresponding to 1st half frame
• FDD2: metrics at the FDD location for SSS sequences corresponding to 2st half frame
• TDD1: metrics at the TDD location for SSS sequences corresponding to 1st half frame
• TDD2: metrics at the TDD location for SSS sequences corresponding to 2st half frame

SSS was detected in the FDD location for SSS sequence corresponding to the 1st half frame. The SSS
sequence number is 25 therefore NCellID1 = 25. The final cell ID is therefore:

NCellID = 3*NCellID1 + NCellID2 = 76.
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HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and an HDL testbench for the Cell Search HDL
subsystem. Note that testbench generation can take a while due to the length of the tests vectors that
are generated.

The Cell Search HDL subsystem was synthesized on a Xilinx® Zynq®-7000 ZC706 evaluation board.
The post place and route resource utilization results are shown in the table below. The design met
timing with a clock frequency of 200 MHz.

       Resource        Usage
    _______________    _____

    Slice Registers    44658
    Slice LUTs         20271
    RAMB18                25
    RAMB36                11
    DSP48                110

Appendix A - LTE Downlink Synchronization Signals

LTE provides two physical signals to aid the cell search and synchronization process. These are the
Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS).

The cell ID of the eNodeB is encoded in the PSS and SSS. The duplex mode, cyclic prefix length, and
frame timing can be determined from their positions within the received signal. The PSS and SSS are
transmitted twice every frame. There are 3 possible PSS sequences, and the eNodeB transmits the
same PSS every half frame. For each PSS, there are 168 possible SSS sequences in the first half of
the frame and 168 different possible SSS sequences in the second half of the frame. This means that
once a SSS has been detected, the receiver knows if it is in the first or second half of a frame. The
PSS and SSS sequences depend on the cell ID, therefore, there are 3 * 168 = 504 possible cell IDs.
The cell ID is

NCellID = 3*NCellID1 + NCellID2

where NCellID2 is the PSS sequence number from 0 to 2, and NCellID1 is the SSS sequence number
from 0 to 167. Each instance of the PSS occupies the central 62 subcarriers of one OFDM symbol, as
does each instance of the SSS. For normal cyclic prefix mode the locations of the PSS and SSS signals
are follows:

• FDD Mode: PSS is in symbol 6 of subframe 0, SSS is in symbol 5 of subframe 0
• TDD Mode: PSS is in symbol 2 of subframe 1, SSS is in symbol 13 of subframe 0

There are 14 symbols in each subframe, numbered from 0 to 13. Therefore, in FDD mode, the PSS is
transmitted one OFDM symbol after the SSS, whereas in TDD mode the PSS is transmitted three
OFDM symbols after the SSS. This difference in relative timing allows the receiver to discriminate
between the two duplex modes. The positions of PSS and SSS within radio frames in FDD and TDD
mode are illustrated below.
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For more details see “Synchronization Signals (PSS and SSS)” (LTE Toolbox).

Appendix B - Cell Search and Selection Algorithm

This section describes the algorithm used by the model to detect eNodeB signals. The algorithm is
designed to cope with real world conditions such as frequency offsets, noise and interference, and
variation in the SNR of the PSS and SSS over time. To detect eNodeB in the presence of such
conditions, the example uses three techniques:

1 Frequency recovery is applied prior to PSS and SSS detection.
2 Dynamic thresholds are used to validate the PSS and SSS correlation metrics and minimize the

probability of false alarm.
3 Multiple attempts are made to detect the PSS and SSS; for example, if none of the correlation

metrics for a specific instance of the SSS exceed the threshold, the detector will wait half a frame
and try again, up to a predefined number of attempts.

Frequency Recovery

Frequency recovery is performed by utilizing the time domain structure of the received signal. In LTE
(as with other OFDM based systems), each symbol consists of a useful part and a Cyclic Prefix (CP).
The CP is generated by copying a small slice from the end of the symbol and prepending it to the
start of the symbol. This can be exploited in a receiver by multiplying the received signal with the
complex conjugate of a delayed version of itself, and then integrating across the CP duration, where
the delay is the duration of the useful part. In effect, the received signal is cross-correlated with a
delayed version of itself. The magnitude of the integrator output has peaks at symbol boundaries. The
phase angle of the signal at these peaks is related to the frequency offset. This approach is used in
the present example, and combined with additional averaging, to estimate the frequency offset. The
algorithm can detect frequency offsets from -7.5 kHz to +7.5 kHz.

PSS Detection

PSS detection is performed by continuously cross-correlating the received signal with all three
possible PSS sequences in the time domain. In addition, the energy of the signal within the span of
the correlators is computed on each time step and then scaled to generate a threshold. The PSS
detection algorithm aims to pick the strongest cell by picking the maximum PSS correlation metric
within a 10 ms time window. The following pseudocode describes the search algorithm:
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initialize position of first 10 ms search window

for k = 1 to 4 (number of PSS attempts)

   find correlation levels which exceed the threshold
   if any correlation levels exceed the threshold
      find the max correlation level of those which exceed the threshold
      PSS detected: break loop and start SSS search
   else
      PSS not detected: move search window to next 10ms period
   end
end

SSS Detection

Once PSS is located, the detector can narrow down the position of the SSS to two possible locations;
one for FDD and one for TDD. The SSS correlation metrics are computed in the frequency domain, by
evaluating the dot product of the sequence. The following algorithm is used to search for and select
an SSS sequence.

initialize SSS search window

for k = 1 to 8 (number of SSS attempts)

   for each duplex mode in [FDD, TDD]
      extract 128 point search window for current duplex mode
      compute FFT and extract SSS subcarriers
      compute correlation metrics for SSS sequences corresponding to 1st half frame
      compute correlation metrics for SSS sequences corresponding to 2nd half frame
      compute signal energy-based threshold
   end

   discard correlation metrics which do not exceed the threshold
   if any metrics exceeded the threshold
      pick maximum correlation metric from surviving metrics
      SSS detected: break loop and proceed to next processing stage
   else
      SSS not detected: move SSS search window later by half a frame
   end

end

Cell Search Illustration

The cell search algorithm is shown below for a scenario where PSS and SSS each take 2 attempts to
detect valid signals. The figure also shows the frequency recovery stage. Initially, the receiver has no
knowledge of the received signal frame timing. In the Simulink model (and on hardware), a start
input is used to trigger the detection process. The receiver begins by measuring the frequency offset,
which takes 10 ms. Next, the first 10 ms PSS search takes place. In this case, no PSS is detected,
therefore a second PSS search is initiated. This time PSS is detected. The first SSS search takes place
just short of 10 ms after the location of the detected PSS, avoiding the need to buffer significant
amounts of data, and making the algorithm hardware friendly. As shown, SSS also takes two attempts
in this case. From the location of the detected SSS, the receiver knows the duplex model (FDD in this
case) and the frame timing.

 LTE HDL Cell Search

5-61



References

1. 3GPP TS 36.214 "Physical layer"

See Also

Related Examples
• “LTE HDL MIB Recovery” on page 5-80
• “LTE HDL SIB1 Recovery” on page 5-63
• “LTE HDL PBCH Transmitter” on page 5-91

5 Reference Applications

5-62



LTE HDL SIB1 Recovery
This example shows the design of an HDL optimized receiver that can recover the first System
Information Block (SIB1) from an LTE downlink signal.

Introduction

This design builds on the “LTE HDL MIB Recovery” on page 5-80, adding the processing required to
decode SIB1. It is based on the LTE Toolbox™ “Cell Search, MIB and SIB1 Recovery” (LTE Toolbox).

In order to decode the SIB1 message, additional steps are required after the MIB (Master
Information Block) has been decoded. This design adds functionality to locate and decode the
PCFICH (Physical Control Format Indicator Channel), the PDCCH (Physical Downlink Control
Channel), and the PDSCH (Physical Downlink Shared Channel). The extensible architecture used in
the “LTE HDL MIB Recovery” on page 5-80 allows the design to be expanded, while reusing the core
functionality of the MIB recovery implementation.

Summary of SIB1 Processing Stages

The initial stages of SIB1 recovery are the same as for the “LTE HDL MIB Recovery” on page 5-80,
composed of the cell search, PSS/SSS detection, OFDM demodulation, and MIB decoding. LTE signal
detection, timing and frequency synchronization, and OFDM demodulation are performed on the
received data, providing information on the subframe number, duplex mode, and cell ID of the
received waveform. The received data is buffered into the grid subframe memory buffer and, once a
complete subframe has been stored in the memory, the channel estimate is calculated. The channel
estimate can then be used to equalize the grid as data is read out from the buffer. When subframe 0
has been stored in the buffer, and the channel estimate calculated, the Physical Broadcast Channel
(PBCH) can then be retrieved from the grid, equalized, and decoded, recovering the MIB message.

The MIB message contains a number of parameters which are required to decode the subsequent
channels. One of these parameters is the System Frame Number (SFN). The SFN is required to
determine the location of the SIB1 message, since the SIB1 message is only sent in even numbered
frames (mod(SFN,2) = 0). Hence, if the MIB message was decoded within an odd frame, the
receiver must wait until the next even frame before attempting to decode the SIB1. When the
receiver has decoded the MIB message, and has received subframe 5 of an even frame, an attempt at
decoding the SIB1 can be made.

The MIB message also provides the NDLRB system parameter, indicating the Number of Downlink
Resource Blocks used by the transmitter. For different NDLRB values (different bandwidths) the
number of active subcarriers is different. Hence the NDLRB affects the indexing of the resource grid
memory for each of the channels processed after the PBCH.

NDLRB is first used to calculate the Resource Elements (REs) allocated to the Physical Control
Format Indicator Channel (PCFICH), and the corresponding symbols can be retrieved from the
resource grid. The PCFICH Decoder then attempts to decode the CFI data using the symbols
retrieved from the resource grid.

The CFI indicates the number of OFDM symbols allocated to the Physical Downlink Control Channel
(PDCCH). The CFI, in conjunction with the MIB parameters NDLRB, PHICH Duration, and Ng, is used
to calculate which Resource Elements (REs) are allocated to the PDCCH. These REs are requested
from the grid, and passed to the PDCCH decoder. If the signal being decoded is using Time Division
Duplexing (TDD) the PDCCH allocation varies based on the TDD configuration used. Because the TDD
configuration is not know at this point, each of the TDD configurations that affect the PDCCH
allocation are tried, until successfully decoding.
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Once the PDCCH has been decoded, a blind search of the PDCCH common search space is conducted
to find the DCI (Downlink Control Information) message for the SIB1. This DCI message has a CRC
scrambled with the SI-RNTI (System Information Radio Network Temporary Identifier) and carries
information about the allocation and encoding of the SIB1 message within the PDSCH. The search
operation blindly attempts to decode DCI messages with a number of possible formats, from a
number of candidates. If the signal being decoded is using TDD and a DCI message is not found
during the search, then PDCCH decoding will be re-attempted for any untried TDD configurations.

Once located, the DCI message is parsed, giving the DCI allocation type, RIV, and Gap parameters
required for the PDSCH resource allocation calculation. The Physical Resource Blocks (PRBs)
allocated to the SIB1 message within the PDSCH can then be calculated. Parsing the DCI message
also provides information on the transport block length and redundancy versions required to decode
the PDSCH.

Using the PRB allocation information the REs allocated to the SIB1 message within the PDSCH can
be calculated. The PDSCH decoding then processes the data retrieved from the resource grid. If
decoding is error free the SIB1 message bits are returned.

Architecture and Configuration

The architecture is designed to be extensible, allowing channel processing subsystems to be added,
removed, or exchanged for alternative implementations. This extensibility is illustrated by the
additions made to the MIB design to produce the SIB1 design. The core functionality is the same,
with additional processing and control added for the three extra channels required to decode the
SIB1.

5 Reference Applications

5-64



To allow reuse and sharing of the main subsystems of the model, the example uses “Model
References”. Model referencing allows for unit testing of each of the subsystems, and for the models
to be instantiated in multiple different examples. The LTE HDL Cell Search, LTE HDL MIB Recovery
and LTE HDL SIB1 recovery all share reference models.

• Cell search, synchronization and OFDM demodulation perform initial stages of detecting a
downlink signal and synchronization. Unequalized grid data is streamed out to be buffered in the
grid memory for further processing.

• The central resources of the grid memory, channel estimation, and channel equalization are
grouped together, with an interface such that data can be requested by providing an address to
the grid, and equalized symbols are output for processing by the decoding stages.

• The indexing subsystems request data from the grid by providing a subcarrier number, an OFDM
symbol number, and a read enable flag. These signals are grouped together in a bus for easier
routing in the Simulink model. Only one indexing subsystem can access the grid at a time. A
controller is used to avoid contention and enable the indexing subsystems at the correct time.
Each of the indexing subsystems has a corresponding decoding subsystem, which attempts to
decode the data requested from the grid by the indexing subsystem.

• The decoding subsystems receive equalized complex symbols from the grid, with a signal
indicating when the incoming data is valid. The decoding subsystems must be enabled before they
will start to process valid samples at the input, and it is expected that only one of the decoding
subsystems will be enabled at any point in time. A central controller for the SIB1 decoder enables
the decoding subsystems at the appropriate time.

• The control subsystem tracks the state of the decoder and enables the decoding and indexing
subsystems in the correct sequence using the done, valid, detected, and error signals (as
appropriate) for the various processing stages.

• The DCI resource allocation function (ltehdlDCIResourceAllocation) was selected for
implementation on software, as part of a hardware/software co-design implementation. This
function was selected due to the low frequency of calculation, and the complex loop behaviour
making it inefficient to implement in hardware.

Structure of Example Model

The top-level of the ltehdlSIB1Recovery model is shown in the figure below. The HDL LTE SIB1
subsystem supports HDL code generation. The SW DCI Resource Allocation subsystem represents
the software portion of a design partitioned for hardware/software co-design implementation. The
stateViewer MATLAB Function block generates text information messages based on the
decoderState signal from the HDL LTE SIB1, and prints this information to both the Simulink
Diagnostic Viewer and to a MATLAB figure window. The stateViewer also produces the
stopSimulation signal, which stops the simulation when the decoder reaches a terminal state, as
indicated by the text information messages.
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SW DCI Resource Allocation

The SW DCI Resource Allocation subsystem contains an instance of the
ltehdlDCIResourceAllocation model. Buses are used here to facilitate signal routing to and from
this subsystem.
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dciRecourceAllocation

The ltehdlDCIResourceAllocation model reference performs parsing of the DCI message bits,
generates the DCI parameters, then uses the DCI parameters to perform the DCI Physical Resource
Block (PRB) allocation calculation. These operations are equivalent to the LTE Toolbox functions
lteDCI and lteDCIResourceAllocation. Due to the complexity of the PRB allocation calculation,
this part of the design was selected for implementation in software, as an HDL implementation would
require a large amount of hardware resources.

HDL LTE SIB1

The HDL LTE SIB1 subsystem contains 2 subsystems. The Downlink Sync Demod subsystem is an
instance of the ltehdlDownlinkSyncDemod model, which is described in the “LTE HDL Cell Search”
on page 5-46 example. It performs the cell search, timing and frequency synchronization, and OFDM
demodulation. The HDL MIB + SIB1 Decoder subsystem performs the channel decoding operations
required to decode the MIB and SIB1 messages, as described below.
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HDL MIB + SIB1 Decoder

The HDL MIB + SIB1 Decoder structure can be seen below. It receives OFDM demodulated grid
data from the Downlink Sync Demod subsystem, and stores the data in a subframe buffer,
Resource Grid Memory. It then calculates the channel estimate for the received data in the
Channel Estimation subsystem and uses this to equalize data as it is read out of the Resource Grid
Memory. A series of channel decoding steps are then performed in order to decode the SIB1
message. In total there are 10 referenced models at this level of hierarchy: 4 channel decoders, 4
channel index generation subsystems, and 2 subsystems performing resource grid buffering, channel
estimation, and equalization.

The PBCH Indexing, Resource Grid Memory, Channel Equalization and MIB Decoder all
instantiate the same referenced models used in the MIB example. For more detailed information
about the operation of these referenced models, refer to “LTE HDL MIB Recovery” on page 5-80.
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Indexing Subsystems

There are 4 indexing subsystems, corresponding to the 4 channels that need to be decoded in order
to receive a SIB1 message: PBCH, PCFICH, PDCCH, and PDSCH. Each of the indexing subsystems
has a corresponding decoding subsystem. The indexing subsystems use an address bus, consisting of
a read address corresponding to the subcarrier number, a read bank corresponding to an OFDM
symbol, and a read enable signal to control access to the grid. The read_selector MATLAB Function
block selects between the outputs of the 4 indexing subsystems based on the read enable signal. It is
assumed that only one indexing subsystem will attempt to read from the grid at any point in time,
with the CONTROL subsystem in charge of enabling the indexing subsystems at the appropriate
time.

PBCH Indexing

The PBCH Indexing block references the ltehdlPBCHIndexing model. It performs the index
generation for the PBCH and is equivalent to the LTE Toolbox function ltePBCHIndices.
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PCFICH Indexing

The PCFICH Indexing block references the ltehdlPCFICHIndexing model. It generates the indices
required to read the PCFICH symbols from the grid memory and is equivalent to the LTE Toolbox
function ltePCFICHIndices. The PCFICH is always in the first OFDM symbol (the first memory
bank of the grid buffer) and is 16 symbols in length, in 4 groups of 4 symbols. The 4 groups of
symbols are distributed at quarters of the occupied bandwidth, with an offset dependent on the Cell
ID.

PDCCH Indexing

The PDCCH Indexing subsystem generates the indices required to read the PDCCH symbols from
the grid memory. It references the ltehdlPDCCHIndexing model and is equivalent to the LTE
Toolbox functions ltePDCCHIndices and ltePDCCHDeinterleave. The PDCCH spans between 1
and 4 OFDM symbols, as defined by the value decoded from the PCFICH. The number of subcarriers
spanned by the PDCCH depends on NDLRB. As a result, the number of symbols read from the grid
varies, which is indicated by the nSymbols output. The PDCCH occupies all of the OFDM symbols
indicated by the CFI, but must exclude any locations which have already been allocated to other
channels, such as the PCFICH and PHICH. The main indexing calculation is performed by the
PDCCH_Index_Gen subsystem. It calculates the locations of the PCFICH and PHICH then excludes
these locations from the range of indices occupied by the PDCCH. In TDD mode number of symbols
occupied by the PHICH varies based on the TDD configuration. For different TDD configurations
there are three possible values of mi (0, 1, and 2), as specified in section 6.9 of [ 1 ], which is a
multiplier to the size of the region allocated to the PHICH. When in the duplexing mode is FDD, mi is
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always 1. The size of the PDCCH in terms of both quadruplets (groups of 4 symbols) and symbols is
given by the Mquad and Msymb outputs.

The ramAddrCalc and lk_ram subsystems are used to perform a cyclic shift on the quadruplets
using the cellID. Because the DCI message for SIB1 is always transmitted in the common search
space of the PDCCH, it is possible to reduce the number of symbols that are read from the grid
memory by retrieving only the symbols from the common search space. In order to do this the
PDCCH deinterleaving operation is performed, and the first 576 symbols are requested from the grid.
If there are less than 576 symbols in the PDCCH then all of the symbols will be requested. In LTE
Toolbox, the PDCCH deinterleaving operation is performed as part of the ltePDCCHDecode function.
However, as this function simply re-orders the data and does not change the data content, it is
possible to move this processing stage to an earlier point in the receiver. By moving the deinterleaver
to act on the indices, rather than the data, and reducing to the common search space after
deinterleaving, the memory requirements for the deinterleaver and the PDCCH decoder are reduced.

PDSCH Indexing

The PDSCH Indexing calculates the locations of the PDSCH in the grid memory based on the
Physical Resource Block (PRB) set, which is passed to this block from the DCI resource allocation
calculation in the SW DCI Resource Allocation subsystem. The PDSCH Indexing is an instance of
the ltehdlPDSCHIndexing model and is equivalent to the LTE Toolbox function ltePDSCHIndices.
The PDSCH occupies all of the symbols in the PRB set which have not previously been allocated to
another channel. Hence the PDSCH indexing function must exclude any locations which are allocated
to the PSS and SSS, and all of the control channel region (i.e. the OFDM symbols indicated by the
PCFICH). As the SIB1 message always occurs in subframe 5 of an even frame, there is no need to
exclude the PBCH locations, as these only occur in subframe 0.
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Decoder Subsystems

There are 4 decoder subsystems, each of which has a corresponding indexing subsystem. When
enabled, the decoder subsystems process equalized symbols from the Channel Equalization
subsystem, performing the operations required to decode the channel. The CONTROL subsystem
enables each of the decoder subsystems at the appropriate time. The outputs from each of the
decoder subsystems are used to locate and decode subsequent channels in the chain. To ensure that
this information is available when required, each of the decoder subsystems registers the decoded
information at the output, for later access. The output registers are cleared using the clearOutputReg
input on each of the decoders.

MIB Decoder

The MIB Decoder uses the same referenced model, ltehdlPBCHDecoder, that is used in the LTE
HDL MIB example. It performs the PBCH and BCH decode operations, equivalent to the LTE Toolbox
functions ltePBCHDecode and lteMIB. The outputs from this block provide the information required
to locate and decode the channel information for the subsequent channels.

CFI Decoder
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The CFI Decoder uses the ltehdlPCFICHDecoder referenced model. It performs the PCFICH and
CFI decode operations equivalent to the ltePCFICHDecode and lteCFIDecode functions in LTE
Toolbox. The input from the Channel Equalization is the 16 symbols requested by the PCFICH
Indexing. The PCFICH Decoder subsystem performs descrambling and QPSK demodulation on the
16 PCFICH symbols to produce 32 soft bits. The CFI Extraction subsystem then correlates the soft
bits with the three CFI codewords. The codeword with the strongest correlation gives the CFI value
of 1, 2, or 3. The CFI value indicates the number of OFDM symbols occupied by the PCFICH. If
NDLRB is greater than ten, the number of OFDM symbols is equal to the CFI value (1, 2, or 3). If
NDLRB is less than or equal to ten, the number of OFDM symbols is one larger than the CFI value (2,
3, or 4). This information is used by the PDCCH Indexing and PDSCH Indexing subsystems.

PDCCHDecodeSearch

The PDCCHDecodeSearch subsystem uses the ltehdlPDCCHDecode referenced model. It
performs the PDCCH decode, blind PDCCH search, and DCI decode operations required to locate and
decode the SIB1 DCI message within the PDCCH. This is roughly equivalent to the LTE Toolbox
functions ltePDCCHDecode, ltePDCCHSearch, and lteDCI (which is used within
ltePDCCHSearch) with a few modifications. As the SIB1 DCI message is always within the common
search space of the PDCCH, only these symbols are retrieved from the grid buffer, as described above
for PDCCH Indexing. The SIB1 DCI message is always DCI format 1A or 1C. It is found in the
PDCCH common search space using PDCCH aggregation levels 4 or 8, and the CRC for the DCI
message is scrambled with the System Information Radio Network Temporary Identifier (SI-RNTI).
Using this information the search can be simplified compared to the LTE Toolbox ltePDCCHSearch
implementation. For more information on the LTE Toolbox PDCCH search process, see the “PDCCH
Blind Search and DCI Decoding” (LTE Toolbox) example. The PDCCHSearch subsystem blindly
attempts to decode DCI messages from all of the possible candidates and combinations within the
common search space until a DCI message with the correct CRC mask is decoded, indicating that the
SIB1 DCI message has been found, or all candidates have been attempted, and no SIB1 DCI message
has been found. When a SIB1 DCI message has been found, the search stops, and the information
from the decoded DCI message is returned from the block. This information is then passed to the SW
DCI Resource Allocation subsystem to parse the DCI message, and determine which resources in
the PDSCH have been allocated to the SIB1 message.

The demod/descramble subsystem performs descrambling and QPSK demodulation, while the
PDCCHSearch subsystem performs the search process described in more detail below.
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PDCCHSearch

Within the PDCCHSearch subsystem there are a number of processing stages which combine to
perform the PDCCH search operation. The pdcchSearchControl MATLAB Function block writes the
incoming data to the PDCCH RAM, then controls the search process, iterating through the different
combinations of DCI format, PDCCH format, and PDCCH candidates. The dciControl MATLAB
Function block generates the read addresses for the PDCCH RAM given the PDCCH candidate
number and size. The pdcchRateRecovery MATLAB Function block is equivalent to the LTE Toolbox
function lteRateRecoverConvolutional, performing the deinterleaving and rate recovery for the
convolutional decoder. The dciDecode subsystem performs the convolutional decoding of the rate
recovered bits, then checks the message CRC with the SI-RNTI to determine if a SIB1 DCI message
has been found. If successfully decoded, the DCI message bits are buffered and output, and the
search process is stopped. The PDCCH search process will also stop if all of the possible candidates
have been checked, but no DCI message for SIB1 has been found, with the error output being
asserted.
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PDSCHDecode

The PDSCHDecode subsystem uses the ltehdlPDSCHDecode referenced model. It is equivalent to
the ltePDSCHDecode and lteDLSCHDecode functions in LTE Toolbox. The QPSKDemod and
PDSCHPRBS demodulate the incoming signals and generate the descrambling sequence. The
descrambled bits are then passed to TurboRateRecovery which performs deinterleaving and rate
recovery of the incoming bits. The SampleControlBusGeneration subsystem generates the control
signals required to interface with the LTE Turbo Decoder and LTE CRC Decoder, which decode the
signal. The LTE CRC Decoder indicates the status of the CRC decode, asserting the err signal, along
with the end signal in the ctrl bus output, if errors have been detected. If the CRC does not detect
any errors then the SIB1 message has been successfully decoded, and the sib1_bits are streamed out
from the block, with bitsValid indicating when sib1_bits are valid. Once the SIB1 message has been
detected, and the bits output from PDSCHDecode, the simulation stops. No attempt is made to
combine the different Redundancy Versions (RVs) of the DLSCH.

CONTROL Subsystem

The CONTROL subsystem tracks the state of the decoder through the different channel processing
stages, enabling each of the indexing and decoding subsystems in turn. The subframe number and
frame number are taken as inputs, allowing the frameCount function to track the System Frame
Number (SFN). The subframe and frame numbers are used to determine when channels will be
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available for decode (e.g. SIB1 is only transmitted on subframe 5 of even numbered frames). The
decoderState MATLAB Function block implements a simple state machine that keeps track of which
processing stages have been completed, and which stage to enable next. The state of the decoder is
output from the controller, and is parsed by the stateViewer MATLAB Function block at the top level
of the model to produce human readable messages.

When the received signal is in TDD mode the CONTROL subsystem manages the blind search of each
of the TDD configurations, running the PDCCH Indexing and PDCCH Decoding subsystems for
each of the three possible mi values. The different mi values {0,1,2} result in different PHICH
allocations, hence different PDCCH allocations. The PDCCH allocations are calculated, and the
PDCCH decode attempted for each mi value, until a SIB1 DCI message is found, or all of the
possibilities are exhausted.

Results and Display

The simulation model is configured to stop the simulation under a number of conditions:
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• If the cell search does not find any cells.

• If the MIB detection has an error.

• If a SI-RNTI DCI message is not detected during the PDCCH search.

• At the end of the PDSCH decoding attempt.

If the SIB1 message is successfully decoded, it is output from the sib1Bits port, with the sib1BitsValid
port indicating when the output is valid. The data is buffered and sent to the MATLAB workspace.

The LTE HDL SIB1 Receiver State Information figure window displays text messages indicating the
current state of the decoder. The state of the system is tracked by the CONTROL subsystem, with the
decoderState signal passed up to the top level of the model where the statePrint MATLAB Function
block generates the text info messages.

The display blocks in the top level of the model show some of the key parameters decoded by each of
the channel processing stages. A number of the key control signals, from within the CONTROL
subsystem, are logged for viewing with the logic analyzer.
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HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Note that test
bench generation for this example takes a long time due to the length of the simulation required to
create the test vectors.

HDL code for the HDL LTE SIB1 subsystem was generated using the HDL Workflow Advisor IP Core
Generation workflow for a Xilinx® Zynq®-7000 ZC706 evaluation board, and then synthesized. The
post place and route resource utilization results are shown below. The design met timing with a
target clock frequency of 150MHz. Using the workflow advisor IP core generation workflow allows
the input and output ports to be mapped to AXI4-Lite registers, reducing the number of FPGA IO pins
required, and allows the design to be split between hardware and software.

       Resource        Usage 
    _______________    ______

    Slice Registers    128726
    Slice LUTs         70032 
    RAMB18             52    
    RAMB36             193   
    DSP48              156   

For more information see “Prototype LTE Algorithms on Hardware” on page 2-12.

Simulation Limitations

The stateViewer MATLAB function block is not supported for simulation in rapid accelerator mode.
This block can be removed or commented out if rapid accelerator simulation is required.
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1. 3GPP TS 36.211, "Physical Channels and Modulation"

See Also

Related Examples
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LTE HDL MIB Recovery
This example shows the design of a LTE MIB recovery system optimized for HDL code generation and
hardware implementation.

Introduction

The model presented in this example can be used to locate and decode the MIB from LTE downlink
signals. It builds upon the “LTE HDL Cell Search” on page 5-46 example, adding processing stages to
decode the MIB. The Master Information Block (MIB) message is transmitted in the Physical
Broadcast Channel (PBCH), and carries essential system information:

• Number of Downlink Resource Blocks (NDLRB), indicating the system bandwidth
• System Frame Number (SFN)
• PHICH (Physical HARQ Indicator Channel) Configuration

The design is optimized for HDL code generation and the architecture is extensible, allowing
additional processing stages to be added, such as indexing and decoding for the PCFICH, PDCCH and
PDSCH (see “LTE HDL SIB1 Recovery” on page 5-63).

MIB Processing Stages

In order to decode the MIB message this example performs these operations:

• Cell search and OFDM demodulation
• Buffering grid data
• Channel estimation and equalization
• PBCH Indexing - locating PBCH within the grid
• PBCH Decoding - decoding PBCH, BCH, and MIB

Cell Search and OFDM Demodulation

LTE signal detection, timing and frequency synchronization, and OFDM demodulation are performed
on the received data. This produces the grid data and provides information on the subframe number
and cell ID of the received waveform. The MIB message is always carried in subframe 0, and the
cellID is used to determine the location of the cell-specific reference signals (CRS) for channel
estimation, as well as being used to initialize the descrambling sequence for PBCH Decoder.

Buffering Grid Data

As the MIB message is always carried in subframe 0 of the downlink signal, subframe 0 is buffered in
a memory bank. At the same time as the subframe is being written to the memory bank, the location
of the CRS are calculated using the cellID, and CRS are sent to the channel estimator.

Channel Estimation

The CRS from the received grid are then compared to the expected values, and the phase offset
calculated. The channel estimates for each CRS are averaged across time, and linear interpolation is
used to estimate the channel for subcarriers which do not contain CRS. The channel estimate for the
subframe is used to equalize data when it is read from the grid memory.

PBCH Indexing
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The PBCH is always allocated to the central 6 Resource Blocks (RBs) of subframe 0, within the first 4
OFDM symbols of the 2nd slot. It occupies all of the Resource Elements (REs) within this region,
excluding the locations allocated to CRS. The locations of the CRS are calculated using the cellID,
then the addresses of the REs occupied by the PBCH can be calculated (240 locations in total), and
the data retrieved from the grid memory bank.

PBCH Decoding

As the PBCH data is read from the grid memory bank it is equalized using the channel estimate. The
240 equalized PBCH symbols are buffered, and PBCH and BCH decoding are attempted for each of
the 4 possible versions of the MIB within a PBCH transport block. Each of these versions requires a
different descrambling sequence, so descrambling, demodulation, rate recovery, convolutional
decoding, and CRC check must be attempted for each. If successfully decoded, the CRC value gives
the cellRefP value - the number of transmit antennas, and the MIB bits can be parsed to give the
system parameters.

Model Architecture

The architecture of the LTE HDL Cell Search and MIB Recovery implementation is shown in the
diagram below.

The input to the receiver is baseband I/Q data, sampled at 30.72 Msps. A 2048-point FFT is used for
OFDM demodulation, and is sufficient to decode all of the supported LTE bandwidths. The resource
grid buffer is capable of storing one subframe of LTE data. Once the receiver has synchronized to a
cell, data from the OFDM demodulator is written into the grid buffer. The PBCH indexing block then
generates the indices of the resource elements which carry the PBCH. Those resource elements are
read out of the grid buffer and equalized, before being passed through the PBCH decoder. This
architecture is designed to be extensible and scalable so that additional channel indexing and
decoding functions can be inserted as needed. For example it can be extended to perform SIB1
recovery as shown in the “LTE HDL SIB1 Recovery” on page 5-63 example.

The top level of the ltehdlMIBRecovery model is shown below. HDL code can be generated for the
HDL LTE MIB Recovery subsystem.
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The ltehdlMIBRecovery_init.m script is executed automatically by the model's InitFcn
callback. This script generates the dataIn and startIn stimulus signals as well as any of the constants
needed to initialize the model. Input data can be loaded from a file which, for this example, is “LTE
Receiver Using Analog Devices AD9361/AD9364” (Communications Toolbox Support Package for
Xilinx Zynq-Based Radio). Alternatively, an LTE waveform can be synthesized using LTE Toolbox
functions. To select an input source, change the loadfromfile parameter in
ltehdlMIBRecovery_init.m.

SamplingRate = 30.72e6;
simParams.Ts = 1/SamplingRate;

loadfromfile = true;

if loadfromfile
    load('eNodeBWaveform.mat');
    dataIn = resample(rxWaveform,SamplingRate,fs);
else
    dataIn = hGenerateDLRXWaveform();
end

HDL Optimized LTE MIB Recovery

The structure of the HDL LTE MIB Recovery subsystem is shown below. The Downlink Sync
Demod block performs frequency and time synchronization, PSS/SSS signal detection, and OFDM
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demodulation. The MIB Decoder subsystem buffers subframe 0 of the incoming data, performs
channel estimation, and attempts to decode the PBCH to recover the MIB information.

Downlink Synchronization and Demodulation

The Downlink Sync Demod subsystem takes in I/Q data at 30.72 Msps, and outputs the unequalized
downlink resource grid data. It is an instance of the ltehdlDownlinkSyncDemod model reference,
which implements the following functions:

• Frequency recovery
• Primary Synchronization Signal (PSS) detection
• Secondary Synchronization Signal (SSS) detection
• Timing recovery, based on the PSS and SSS signals
• OFDM demodulation (using a 2048 point FFT)
• Cell ID calculation, based on PSS and SSS detection results

The operation of the ltehdlDownlinkSyncDemod is described in more detail in the “LTE HDL Cell
Search” on page 5-46 example.

MIB Decoder

The MIB Decoder subsystem is shown below. It consists of four subsystems: PBCH Indexing,
Resource Grid Memory, Channel Equalization, and PBCH Decoder. The order of operations is as
follows:
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1 The cellDetected input is asserted, preparing the subsystem to receive and process data.
2 OFDM data is streamed into the MIB Decoder subsystem, and subframe 0 is stored in the

Resource Grid Memory.
3 The Channel Equalization subsystem calculates a channel estimate for subframe 0
4 The PBCH Indexing block starts generating PBCH resource element indices.
5 Those resource elements are then read out of the Resource Grid Memory and equalized by the

Channel Equalization block.
6 Finally the equalized PBCH data is passed through the PBCH Decoder block and the MIB is

extracted.

Resource Grid Memory

The Resource Grid Memory block contains a memory bank, logic to control reading and writing of
the grid memory bank, and logic to locate and output the CRS. The memory bank capacity is one
subframe of demodulated OFDM data at the largest supported LTE bandwidth (20MHz).

The MemoryBank Write Controller is responsible for writing subframes of data to the memory
bank. The writeSubframe input enables the write controller for the appropriate subframes; subframe
0 in the case of the present example. The LTE Memory Bank contains RAM of dimensions 14 x 2048
x 16 bit complex values; that is 14 ODFM symbols, each containing 2048 complex values. The
rsOutputGen subsystem calculates the locations of the cell reference symbols, extracts these from
the data as it is written to the grid memory, and outputs these via the gridData output signal.

The gridData output port carries the CRS signals, from rsOutputGen, when data is being written to
the grid memory (gridWriteDone output port is low) and carries data from the LTE Memory Bank
when the write to the grid memory is complete (gridWriteDone output port is high).
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PBCH Indexing

The PBCH Indexing block computes the memory addresses required to retrieve the PBCH from the
grid memory buffer. This is equivalent to the LTE Toolbox ltePBCHIndices function. The data
retrieved from the grid memory is then equalized and passed to the PBCH Decoder for processing.
The PBCH Indexing subsystem becomes active after the data for subframe 0 has been written to the
grid memory, as indicated by the gridWriteDone output of the Resource Grid Memory subsystem.
The PBCH is always 240 symbols in length, centered in the middle subcarriers, in the first 4 symbols
within the 2nd slot of subframe 0.

Channel Estimation and Equalization

The Channel Equalization block contains three main subsystems. cellRefGen generates the cell-
specific reference signal (CRS) symbols using a Gold Sequence generator. chEst performs channel
estimation assuming two transmit antennas by using a simple, hardware-friendly channel estimation
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algorithm. TxDivDecode performs transmit diversity decoding to equalize the phase of the received
data, using the channel estimates.

The channel estimator assumes the transmitter is using two antennas, generating a channel estimate
for each antenna. For each antenna the channel estimator generates a single complex-valued channel
estimate for each subcarrier of the subframe using the following algorithm:

1 Estimate the channel at each CRS resource element by comparing the received value to the
expected symbol value (generated by cellRefGen).

2 Average these channel estimates across time (for the duration of the subframe) to generate a
single complex-valued channel estimate for each subcarrier that contains CRS symbols.

3 Use linear interpolation to estimate the channel for subcarriers which do not contain CRS
symbols.

The simple time average algorithm used for the channel estimation assumes low channel mobility.
Therefore, the channel estimate may not be of sufficient quality to decode waveforms that were
transmitted through fast fading channels. The algorithm also avoids using a division operation when
calculating the channel estimate at each CRS. This means that the amplitude of the received signal
will not be corrected, which is suitable for QPSK applications, but will not work for QAM, where
accurate amplitude correction is required for reliable decoding.

Once the channel estimates are calculated for each of the transmit antennas they are used to equalize
the gridData as it is read out from the Resource Grid Memory. TxDivDecode performs the inverse
of the precoding for transmit diversity (as described in of TS 36.211 Section 6.3.4.3 [ 1 ]) and
produces an equalized output signal, which is then passed to the PBCH Decoder.

PBCH Decoder

The PBCH Decoder performs QPSK demodulation, descrambling, rate recovery, and BCH decoding.
It then extracts the MIB output parameters using the MIB Interpretation function block. These
operations are equivalent to the ltePBCHDecode and lteMIB functions in the LTE Toolbox.
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The PBCH Controller stores the equalized data in memory for iterative convolutional decoding
attempts. The 4 attempts made at decoding the MIB correspond to the 4 repetitions of the MIB data
per PBCH transport block.

BCH Decoder

The BCH Decoder quantizes the soft decisions and then decodes the data using the LTE
Convolutional Decoder and LTE CRC Decoder blocks. The recommended wordlength of soft decisions
at the input to the convolutional decoder is 4 bits. However, the BCH Decoder block receives 20-bit
soft decisions as input. Therefore the softBitScalingUnit block dynamically scales the data so that it
utilizes the full dynamic range of the 4 bit soft decisions. The CRC decoder block is configured to
return the full checksum mismatch value. The CRC mask, once checked against the allowed values,
provides cellRefP; the number of cell-specific reference signal antenna ports at the transmitter. If the
CRC checksum does not match one of the accepted values then MIB has not been successfully
decoded and the PBCH Controller decides whether or not to initiate another decoding attempt.

When a MIB has been successfully decoded, the MIB Interpretation subsystem extracts and outputs
the fields of the message.

Performance Analysis

Quality of the input waveform is an important factor that impacts the decoding performance.
Common factors that affect signal quality are multi-path propagation conditions, channel attenuation
and interference from other cells. The quality of the input waveform can be measured using the
cellQualitySearch function. This function detects LTE cells in the input waveform and returns a
structure per LTE cell containing the following fields:

 LTE HDL MIB Recovery

5-87



• FrequencyOffset: Frequency offset obtained by lteFrequencyOffsets function
• NCellID: Physical layer cell identity
• TimingOffset: Timing offset of the first frame in the input waveform
• RSRQdB: Reference Signal Received Quality (RSRQ) value in dB per TS 36.214 Section 5.1.3 [ 2 ]
• ReportedRSRQ: RSRQ measurement report (integer between 0 and 34) per TS 36.133 Section

9.1.7 [ 3 ]

Applying the cellQualitySearch function to the captured waveform eNodeBWaveform.mat used
in ltehdlMIBRecovery_init.m returns the following report:

FrequencyOffset: 536.8614
NCellID: 76
TimingOffset: 12709
RSRQdB: -5.3654
ReportedRSRQ: 29

FrequencyOffset: 536.8614
NCellID: 160
TimingOffset: 3108
RSRQdB: -18.1206
ReportedRSRQ: 3

There are two cells in the captured waveform, one with cell ID 76 and one with cell ID 160. The cell
with NCellID = 76 has a much higher ReportedRSRQ, indicating that it is a stronger signal. In this
example the Simulink model decodes the MIB for NCellID = 76.

Results and Display

The scope below shows the key control signals for this example. After a pulse is asserted on the start
signal the cell search process is started. Successful detection of a cell is indicated by the cellDetected
signal. When the cellDetected signal is asserted the NCellID and TDDMode signal become active,
indicating the cell ID number and whether the cell is using TDD (1) or FDD (0). After the cell has
been detected the OFDM demodulator waits until subframe 0 of the next frame to start outputting the
grid data, hence there is a gap between cellDetected going high, and grid data being output as
indicated by the gridDataValid signal. When gridDataValid is first asserted subFrameNum will be
zero, and will increment for subsequent subframes. The simulation stops on the MIBDetected or
mibError signals being asserted.
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Once MIB has been detected the NDLRB, PHICH, Ng, nFrame, and CellRefP signals all become
active, indicating the key parameters of the cell. These parameters are displayed in the model, as
they are static values when the simulation is stopped.

The following MIB information is decoded when decoding the captured waveform:

NCellID (Cell ID): 76
TDDMode (0 = FDD, 1 = TDD) : 0
NDLRB (Number of downlink resource blocks): 25
PHICH (PHICH duration) index: 0
Ng (HICH group multiplier): 2
NFrame (Frame number): 262
CellRefP (Cell-specific reference signals): 2

This indicates that the duplex mode used by the cell is FDD, the MIB was decoded in frame number
262, the PHICH duration is 'Normal' and the HICH group multiplier value is 'One'.

HDL Code Generation and Verification

To generate the HDL code for this example you must have an HDL Coder™ license. Use the makehdl
and makehdltb commands to generate HDL code and HDL testbench for the HDL LTE MIB
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Recovery subsystem. Because the input waveform in this example contains at least 40 subframes to
complete the cell search and MIB recovery, test bench generation takes a long time.

The HDL LTE MIB Recovery subsystem was synthesized on a Xilinx® Zynq®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table below.
The design met timing with a clock frequency of 140 MHz.

       Resource        Usage
    _______________    _____

    Slice Registers    51582
    Slice LUTs         29859
    RAMB18                38
    RAMB36                39
    DSP48                134

For more information see “Prototype LTE Algorithms on Hardware” on page 2-12.

References

1 3GPP TS 26.211 "Physical Channels and Modulation"
2 3GPP TS 36.214 "Physical layer"
3 3GPP TS 36.133 "Requirements for support of radio resource management"

See Also

Related Examples
• “LTE HDL Cell Search” on page 5-46
• “LTE HDL SIB1 Recovery” on page 5-63
• “LTE HDL PBCH Transmitter” on page 5-91
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LTE HDL PBCH Transmitter
This example shows how to implement an LTE transmitter Multiple Input Multiple Output (MIMO)
design, including PSS, SSS, CRS, and MIB, optimized for HDL code generation.

Introduction

The model in this example generates a baseband waveform specified by 3GPP TS 36.211. The
waveform includes the primary synchronization signal (PSS), secondary synchronization signal (SSS),
cell-specific reference signals (CRS), and the master information block (MIB) for transmission
through the physical broadcast channel (PBCH) for multiple antennas. The model supports dynamic
change of NCellID and NDLRB. The MIMO transmitter design is optimized for HDL code generation
and when implemented on an FPGA, it can be used to transmit MIMO signals in real time over the air.
The MIMO design aids the decoding process in the presence of LTE fading channel. This example
supports 1, 2, or 4 antennas and uses transmit diversity as specified in the [ 1 ].

The architecture presented in this example is extensible and allows for integration of additional
physical transmission channels such as physical downlink control channel (PDCCH), physical
downlink shared channel (PDSCH), physical control format indicator channel (PCFICH), and physical
HARQ indicator channel (PHICH).

Architecture and Configuration

This figure shows the LTE HDL Transmitter architecture with PSS, SSS, CRS, and PBCH transmission
chains.

The input sampling rate is assumed to be at 10.24 MHz. PSS, SSS, PBCH, and CRS signals are
generated in parallel, based on the input configuration. A single stream of PSS and SSS signals is
used for all the antennas. Multiple streams of PBCH data are generated for multiple antennas
through the layer mapping and precoding stages. Each antenna is associated with a corresponding
LTE memory bank, which is sized to store one subframe of LTE data samples. These generated data
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streams are written into LTE memory bank corresponding to indices generated, based on the output
ready signal of LTE OFDM Modulator. Then, the data is read out of all LTE memory bank in parallel,
modulated and transmitted on the antennas simultaneously. The LTE OFDM Modulator block uses a
2048-point FFT to support all NDLRBs.

In this example, the transmitter transmits LTE MIMO signals for the following configurations:

        Property              Value       
    ________________    __________________

    Duplex mode         FDD               
    CellRefP            1/2/4             
    Bandwidth           1.4 - 20 MHz      
    Cyclic prefix       Normal/Extended   
    Initial subframe    0                 
    Initial frame       0                 
    Ng                  Sixth/Half/One/Two
    PHICH duration      Normal/Extended   

Structure of Example Model

The top level structure of the ltehdlTransmitter model is shown below. You can generate HDL code
for the HDL LTE MIMO Transmitter subsystem.

Input start is a pulse signal to trigger the transmission. You can configure other parameters,
including NDLRB, NCellID, Cyclic prefix, Ng, PHICH duration and CellRefP in the workspace after
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loading or opening the ltehdlTransmitter.slx model. The ltehdlTransmitter_init.m script
is executed automatically by the model's InitFcn callback. This script configures the individual
blocks in the HDL LTE MIMO Transmitter subsystem. The default transmitter configuration used
by the ltehdlTransmitter_init.m script is:

enb.NDLRB = 6;                      % {6,15,25,50,75,100}

enb.CyclicPrefix = 'Normal';        % {'Normal','Extended'}

enb.Ng = 'Sixth';                   % {'Sixth','Half','One','Two'}

enb.PHICHDuration = 'Normal';       % {'Normal','Extended'}

enb.CellRefP = 4;                   % {1,2,4}

tx_cellids = [390 89 501 231 500];  % {0 to 503}

outRate = 1;                        % {1,2}

TotalSubframes = 45;                % {positive integer}

This default configuration can be changed to use other possible values for each variable, as noted in
the comment on each line.

HDL LTE MIMO Transmitter

The structure of the HDL LTE MIMO Transmitter subsystem is shown below. The Frame
Controller controls the subframe and frame indices. The Input Sampler samples the inputs NDLRB
and NCellID and then propagates the values to the subsequent blocks. The PSS & SSS generation
generates PSS, SSS, and the corresponding memory address based on NDLRB and subframe index.
The MIB generation block generates the serial MIB data. The BCH Encoder and PBCH Encoder
generate information for PBCH channel and memory addresses for all the antennas. The CellRS
Chain generates cell-specific reference signals and corresponding addresses for each antenna. The
Read Write Logic writes and reads the grid data from each LTE Memory Bank and provides the
data to the corresponding LTE OFDM Modulator. The Discrete FIR Filter HDL Optimized filters
the modulated data using coefficients that are calculated based on the input configuration.
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Frame Controller

This subsystem assumes an input sampling rate of 10.24 MHz. It controls the subframe and radio
frame boundaries by providing cellEnb signal to sample NCellID. It returns radio frame and subframe
indices. It also provides syncStart, bchStart, and cellRSStart trigger signals to control the
downstream blocks.
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PSS & SSS Generation

This subsystem generates the primary synchronization signal (PSS), secondary synchronization signal
(SSS), and respective write addresses for LTE Memory Bank based on inputs NDLRB and NCellID.
syncStart triggers the generation of PSS and SSS. The PSS and SSS occupy the same central 62
subcarriers of two OFDM symbols in a resource grid [ 1 ]. This subsystem generates both the signals
and their corresponding addresses at the same time, so that a single stream of both PSS and SSS can
be written to all the LTE Memory Banks corresponding to each antenna simultaneously.

The PSS sequence is generated from a frequency-domain Zadoff-Chu sequence [ 1 ]. The Zadoff-Chu
root sequence index depends on NCellID2, which is derived from NCellID. There are three possible
NCellID2 values, so all possible PSS sequences are precalculated and stored in PSS_LUT.

• PSS_generation: Determines NCellID2 and reads the corresponding PSS sequence out of
PSS_LUT sequentially.

• PSS_indices: Computes the memory addresses required to write PSS data into LTE Memory
Bank. This subsystem is equivalent to the LTE Toolbox™ function ltePSSIndices.
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The SSS sequence is an interleaved concatenation of two 31-bit length binary sequences. The
concatenated sequence is scrambled with a scrambling sequence given by PSS. The combination of
these sequences differs between subframe 0 and subframe 5 [ 1 ]. The indices m0 and m1 are derived
from the physical-layer cell identity group, NCellID1 [ 1 ]. These indices and the sequences s(n), c(n),
and z(n) are calculated and stored in m0_LUT, m1_LUT, S_LUT, C_LUT, and Z_LUT respectively.

• SSS_generation: Computes m0 and m1 based on the NCellID and calculates indices required for
sequences s(n), c(n), and z(n) based on the subframe index. Generates SSS sequence as specified
in [ 1 ].

• SSS_indices: Computes memory addresses required to write SSS data into LTE Memory Bank.
This subsystem is equivalent to the LTE Toolbox™ function lteSSSIndices.
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BCH Encoder

Broadcast Channel (BCH) processes the MIB information arriving to the block in the form of a
maximum of one transport block for every transmission time interval (TTI) of 40 ms. The block
implements the following coding steps.

• CRC Encoding: The entire transport block is used to calculate the CRC parity bits for a
polynomial specified in [ 2 ]. The parity bits are then appended to the transport block. After
appending, CRC bits are scrambled according to the transmit configuration. The LTE CRC
Encoder block uses the CRC mask set by the ltehdlTransmitter_init.m script based on the
input configuration.
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• Channel Coding: The LTE Convolutional Encoder block encodes the information bits using tail-
biting convolutional code with constraint length 7, and polynomial 
in octal. Because the coding rate of the encoder is 1/3, the coded bits are then serialized using a
Serializer1D (HDL Coder) block and control signals are resampled to 30.72 MHz (3 * 10.24 MHz).

• Rate Matching: The coded bits are interleaved, followed by selection of bits for a particular
length using an interleaved address [ 2 ]. For broadcast channel, because the length of the MIB is
constant, interleaved write and read addresses are precalculated and stored in wr_addrLUT and
rd_addrLUT respectively. Once all serialized coded bits have been written into interleaved
addresses of RAM, the bits are read back using interleaved read addresses.

PBCH Encoder

The physical broadcast channel processes the coded bits in the following steps.
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• Scrambling: Coded bits from BCH Encoder are scrambled with a cell-specific sequence using a
LTE Gold Sequence Generator block. The sequence is initialized with NCellID in each radio
frame( ) fulfilling . The generated cell-specific sequence is scrambled with the input
coded bits.

• QPSK Mapping: The modulation scheme specified for PBCH channel is QPSK [ 1 ]. The LTE
Symbol Modulator block generates complex-valued QPSK modulation symbols.

• Layer Mapping: Three subsystems are defined for the layer mapping. These subsystems are
placed inside a variant subsystem. Based on the number of antennas used in the input
configuration enb.CellRefP, the ltehdlTransmitter_init.m script selects one of the three
subsystems in the variant subsystem. This Layer Mapping block separates the input streaming
samples into 1, 2, or 4 sequences based on the number of antennas used. The input is streamed
out without any processing for a single antenna. For multiple antennas, this block generates a
valid signal for each antenna. Only one of the valid signals will be high for each input sample.

• Precoding: This block also uses variant subsystem to process input samples differently based on
the number of antennas in the transmitter configuration. For enb.CellRefP set to 1 the input is
streamed out without any processing. For enb.CellRefP set to 4 (or 2), every four (or two)
consecutive samples X0, X1, X2, X3 (or X0, X1) are processed to generate four (or two) streams of
4 (or 2) samples each in four (or two) time instants.

The subsystem shown generates the output sequence for 4 antennas as specified in [ 1 ].

• Memory: Complex modulated symbols corresponding to the physical broadcast channel for the
initial radio frame are stored in PBCH_RAM. For four consecutive radio frames, the number of bits
to be transmitted on the physical broadcast channel is 1920 for normal cyclic prefix and 1728 for
extended cyclic prefix. The Read Write Controller controls read and write addresses based on

, since the periodicity of the broadcast channel (BCH) is 40 ms.

• PBCH Indexing: Computes the memory addresses required to write PBCH data into LTE Memory
Bank. The PBCH_indices subsystem is equivalent to the LTE Toolbox™ function
ltePBCHIndices.
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CellRS Chain

The cell-specific reference sequence is complex modulated values of a pseudo-random sequence as
defined in [ 1 ]. The pseudo-random sequence generator is initialized with  at the start of each
OFDM symbol,as specified in [ 1 ].

• CellRS_generation: Input cellRSStart triggers the generation of CRS signals. Since the CRS is
available in six OFDM symbols (four OFDM symbols in antenna port 0 and port 1, and two OFDM
symbols in antenna port 2 and port 3) of a single subframe, this subsystem calculates a 6-element

 vector for every subframe. The LTE Gold Sequence Generator block is initialized with vector
 to represent multiple channels and provides six different cell-specific pseudo-random

sequences. The Write Controller controls writing of these sequences into six memory banks in
CellRS_RAM. It also returns rd_en, which enables reading data out of CellRS_RAM. The Read
Controller controls reading of CRS data. It reads six OFDM symbols if four antennas are used, and
reads only 4 OFDM symbols if one or two antennas are used. It returns rd_bank and rd_valid
signals to select an appropriate symbol for the six/four OFDM symbols. The sequence is then
mapped to complex QPSK modulated symbols.

• CellRS_indices: This subsystem computes the addresses for each LTE Memory Bank required
to write CRS data. It is equivalent to the LTE Toolbox™ function lteCellRSIndices.

Read Write Logic
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The Read Write Logic subsystem contains a Write Selector, Read Selector, four LTE Memory Banks
with a Grid Bank Select associated with each of the LTE Memory Bank. The LTE Memory Bank
storage capacity is one subframe of complex modulated symbols at the largest supported LTE
bandwidth (20 MHz). Each LTE Memory Bank can store 14 x 2048 x 16-bit complex values, that is, 14
OFDM symbols, each containing 2048 complex values.

The Write Selector writes subframes of data into the memory banks. The PSS and SSS occupy central
subcarriers. A single stream of PSS and SSS data is used for all the antennas. The PBCH data consists
of multiple streams corresponding to each antenna port. The CRS data generated is mapped to the
grid based on the four addresses generated for each LTE Memory bank in CellRS_indices block.
The Write Selector first writes PSS and SSS simultaneously into corresponding locations in all LTE
Memory Banks. Then, it writes PBCH data and CRS data into the corresponding LTE Memory Banks
and returns rd_enb to indicate that the write is complete.

The Read Selector reads the samples from each LTE Memory Bank based on rd_enb and ready from
the LTE OFDM Modulator block. Each LTE Memory Bank returns a 14 element vector corresponding
to a single subcarrier. The Grid Bank Select selects the appropriate sample from the 14 element
vector to form the resource grid output for each antenna.

Since the scope of this example is limited to PSS, SSS, CRS, and PBCH transmission, all the LTE
Memory Banks are erased at the start of every subframe, before writing new data into the memory.
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OFDM Modulation and Filtering

Grid data from LTE Memory Bank is OFDM-modulated using the LTE OFDM Modulator block with
'Output data sample rate' parameter set to 'Match output data sample rate to NDLRB'. The
modulated data is filtered using a Discrete FIR Filter HDL Optimized (DSP System Toolbox) block
with coefficients generated at a sampling rate corresponding to the NDLRB. Variant subsystems
control the number of OFDM modulators and FIR filters used based on the number of antennas,
which reduces the resource utilization when a single antenna is used.
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Verification and Results

After running the simulation, the ltehdlTransmitter_PostSim.m script is executed automatically
by the StopFcn callback of the model. In this example, the transmitter output is verified by the
following methods:

Verification of model's transmitted signal:

The transmitter output signal in this model is cross-verified with a reference transmitter signal that is
generated using LTE Toolbox™ functions by the following two subplots for each antenna.

1 The first subplot shows the Power Spectral Density (PSD) output of the filtered data. The result is
compared with the PSD of the reference output signal generated using LTE Toolbox™. This
comparison shows the equivalence of the two signals. The figure shows a transmission bandwidth
of BW = 1.4MHz.

2 The second subplot shows the absolute-value of the transmitted waveform. The result is plotted
on top of the absolute-value of the reference transmitter signal generated using LTE Toolbox™.
The plot also shows the difference between the samples obtained through HDL implementation
and the reference signal. This comparison shows the minimal error between the two transmitter
signals.

Cell Search & MIB Decoding Results:

The valid samples of the transmitter output signal are stored to the workspace variable txSamples.
These samples are passed through an LTE fading channel to create the receiver input signal,
rxSamples. The lteFadingChannel (LTE Toolbox) function models the LTE fading channel.
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This example uses the following channel configuration:

chcfg.NRxAnts = 1;
chcfg.MIMOCorrelation = 'Medium';
chcfg.NormalizeTxAnts = 'On';
chcfg.DelayProfile = 'EPA';               % {'off','EPA'}
% The below model configuration exist only if Delay profile is not set
% to 'off'.
chcfg.DopplerFreq = 5;
chcfg.SamplingRate = 30.72e6;
chcfg.InitTime = 0;
chcfg.NTerms = 16;
chcfg.ModelType = 'GMEDS';
chcfg.NormalizePathGains = 'On';
chcfg.InitPhase = 'Random';
chcfg.Seed = 1;

To create a fading-free channel, set the chcfg.DelayProfile to 'off' in the
ltehdlTransmitter_PostSim.m script.

This channel configuration works with the default enb structure, and supports changes only in the
enb.PHICHDuration and enb.Ng fields.

The following figures show the results of the cell search and MIB decoding of the channel output,
rxSamples, using LTE toolbox™ functions. These figures verify the transmitter performance and
compare the HDL transmitter implementation against the input configuration defined in tx_cellids
and enb.

• NCellID after Cell Search: Displays the LTE cell search results performed on the fading channel
output.
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• Cell-wide settings after MIB decoding: Displays the fields of MIB after MIB decoding - NDLRB,
Ng, PHICH duration, and System Frame Number (SFN) performed on the fading channel output.

The example model does not support simulation in rapid accelerator mode.

Validation with Cell Search and MIB Recovery Example

You can verify the LTE HDL PBCH Transmitter example by connecting it to the “LTE HDL MIB
Recovery” on page 5-80 example model and checking that the output of the transmitter is decoded
correctly. To make the transmitter model compatible with the receiver model, make these changes to
the transmitter:

• Set the outRate = 2 (default value 1) before running the model. This will set the output rate of
each LTE OFDM Modulator and generate the fir filter coefficients associated with each
antennas.

• Set the enb.CellRefP = 2 (default value 4) before running the model.
• Use the same NCellID for all radio frames in the transmission. i.e. set tx_cellids to a scalar

value in the range 0-503.
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The figure shows the HDL LTE MIMO Transmitter and HDL LTE MIB Recovery subsystems
connected together. It also shows the result of simulating the model. The display blocks show the
CellID and MIB fields (NDLRB, Ng, PHICH duration and System Frame Number (SFN)) that the
receiver decoded from the output of the HDL LTE MIMO Transmitter subsystem.

You can also verify the design without using a channel by terminating the output from the second
antenna and bypassing the channel system with the output from the first antenna.

HDL Code Generation

To check and generate HDL for this example, you must have an HDL Coder™ license. Use the
makehdl and makehdltb commands to generate the HDL code and test bench for the HDL LTE
MIMO Transmitter subsystem. Because the stopTime in this example depends on
TotalSubframes, the test bench generation time depends on the TotalSubframes.

The HDL LTE MIMO Transmitter subsystem is synthesized on a Xilinx® Zynq®-7000 ZC706
evaluation board. The post place and route resource utilization results are shown in the table below.

         Resources          No. of antennas used = 1    No. of antennas used = 2    No. of antennas used = 4
    ____________________    ________________________    ________________________    ________________________

    Slice Registers                  12788                       23839                       45787          
    Slice LUT                        11984                       22220                       42861          
    RAMB36                           41                          82                          164            
    RAMB18                           11                          21                          41             
    DSP                              49                          93                          177            
    Max. Frequency (MHz)             210.08                      206.39                      204.75         

References

1 3GPP TS 36.211 "Physical channels and modulation".
2 3GPP TS 36.212 "Multiplexing and channel coding".

See Also

Related Examples
• “LTE HDL Cell Search” on page 5-46
• “LTE HDL MIB Recovery” on page 5-80
• “LTE HDL SIB1 Recovery” on page 5-63
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HDL OFDM MATLAB References
This example shows how to model OFDM transmitter, additive white Gaussian noise (AWGN), and
OFDM receiver hardware algorithms in MATLAB as a step towards developing a Simulink® HDL
implementation. The HDL OFDM MATLAB® References example bridges the gap between a
mathematical algorithm and its hardware implementation. This example provides MATLAB references
of the HDL OFDM Transmitter, HDL AWGN, and HDL OFDM Receiver algorithms that you can
implement on hardware. You can use these MATLAB references to generate test vectors for verifying
the HDL implementation of these Simulink models, “HDL OFDM Transmitter” on page 5-121, “HDL
Implementation of AWGN Generator” on page 4-44 and “HDL OFDM Receiver” on page 5-136.

HDL OFDM Transmitter MATLAB Reference

This section describes the MATLAB reference of HDL OFDM Transmitter.

This MATLAB reference accepts a modulation order, code rate index, number of frames, and data bits
to be transmitted as a txParam structure or array of structures. txParam has these fields.

• modOrder — Specify 2, 4, 16, or 64 for 'BPSK', 'QPSK', '16QAM', and '64QAM', respectively. The
default value is 4 ('QPSK').

• codeRateIndex — Specify 0, 1, 2, or 3 for the rates '1/2', '2/3', '3/4', and '5/6' respectively. The
default value is 0 ('1/2').

• numFrames — Specify a positive integer. The default value is 5.
• txDataBits — Specify binary values in a row or column vector of length trBlkSize *

txParam.numFrames. The default is a column vector containing randomly generated binary
values of length trBlkSize * txParam.numFrames.

Calculate the transport block size (trBlkSize) by using these parameters.
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• numSubCar — Number of subcarriers per symbol
• pilotsPerSym — Number of pilots per symbol
• numDataOFDMSymbols — Number of data OFDM symbols
• bitsPerModSym — Number of bits per modulated symbol
• codeRate — Punctured code rate
• dataConvK — Constraint length of the convolutional encoder
• dataCRCLen — CRC length

trBlkSize =
((numSubCar-pilotsPerSym)*numDataOFDMSymbols*bitsPerModSym*codeRate)
-(dataConvK-1)-dataCRCLen

For example, to generate a time-domain OFDM transmitter waveform of 5 frames with a modulation
scheme of 16QAM and code rate of 1/2 using random data bits in the transport block, format the
inputs as structure.

txParam.modOrder = 16; % Modulation order corresponding to 16-QAM
txParam.codeRateIndex = 0; % Code rate index corresponding to 1/2
txParam.numFrames = 5; % Number of frames to be generated

% Calculate transport block size (trBlkSize) using parameters
numSubCar = 72; % Number of subcarriers per symbol
pilotsPerSym = 12; % Number of pilots per symbol
numDataOFDMSymbols = 32; % Number of data OFDM symbols
bitsPerModSym = log2(txParam.modOrder); % Bits per modulated symbol
codeRate = 1/2; % Punctured code rate
dataConvK = 7; % Constraint length of convolutional code polynomial
dataCRCLen = 32; % Data CRC length
trBlkSize = ((numSubCar-pilotsPerSym)*numDataOFDMSymbols* ...
    bitsPerModSym*codeRate) - (dataConvK-1) - dataCRCLen;
txParam.txDataBits = randi([0 1],txParam.numFrames*trBlkSize,1);

% Generate complex baseband transmitter waveform
fprintf('\n-------------------------\n');
fprintf('\n Transmitting %d frames ...\n',sum(txParam.numFrames));
[txWaveform,txGrid,txDiagnostics] = whdlexamples.OFDMTx(txParam);
fprintf('\n Transmission successful\n');
fprintf('\n-------------------------\n');

-------------------------

 Transmitting 5 frames ...

 Transmission successful

-------------------------

whdlexamples.OFDMTx function returns txWaveform, txGrid, and txDiagnostics are described
below.

• txWaveform is the generated time-domain waveform returned as a column vector of length
(((fftLen + cpLen) x txParam.numFrames x numSymPerFrame) + (txFilterLen - 1)), where

• fftLen is the FFT length.
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• cpLen is the cyclic prefix length.
• numSymPerFrame is the number of OFDM symbols per frame.
• txFilterLen is the transmitter filter length.

If txParam is an array of structures, then txParam.numFrames is replaced with the sum of all
numFrames attributes present in the array. The frame structure of the generated time-domain
waveform txWaveform is similar to the Simulink HDL OFDM Transmitter output waveform. For the
detailed explanation of the frame structure, see “HDL OFDM Transmitter” on page 5-121.

2. txGrid is the transmitter grid output and is returned as a matrix of dimension numSubCar-by-
(txParam.numFrames x numSymPerFrame).

3. txDiagnostics is a structure or array of structures and consists of these three fields.

• headerBits — This field represents the header bits as a column vector of size 22, which includes
3 bits for the FFT length index, 2 bits for the symbol modulation type, 2 bits for the code rate
index, and 15 spare bits.

• dataBits — This field represents actual data bits transmitted in the given number of frames
(txParam.numFrames). This field is a binary row or column vector of length
(txParam.numFrames x trbBlkSize). The row or column vector depends on the dimension of
txparam.dataBits. The default size is a column vector of length txParam.numFrames x
trbBlkSize.

• ofdmModOut — This field epresents the OFDM modulator output as a column vector of length
(fftLen + cpLen) x txParam.numFrames x numSymPerFrame.

OFDMTx

whdlexamples.ofdmTx function is used to generate OFDM transmitter waveform with
synchronization, reference, header, pilots, and data signals. This function returns txWaveform,
txGrid, and diagnostics using transmitter parameters txParam. This function internally calls these
individual functions.

• generateOFDMSyncSignal — This function generates the synchronization signal SyncSignal.
This function uses Zadoff-Chu sequence with a root index of 25 and length of 62.

• generateOFDMRefSignal — This function generates the reference signal refSignal for the
given FFT length fftLen. This function uses a BPSK-modulated pseudo random binary sequence.

• generateOFDMPilotSignal — This function generates the pilot signal pilot. This function
uses a BPSK-modulated pseudo random binary sequence.

• OFDMSymbolModulate — This function modulates input bits to complex modulation symbols
based on the specified modulation scheme BPSK, QPSK, 16QAM, and 64QAM.

Plot the resource grid of the transmitter waveform. The plot indicates the magnitude variations of
each resource grid elements.

plotResourceGrid(txGrid);
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HDL AWGN MATLAB Reference

This section describes the MATLAB reference of HDL AWGN.

This MATLAB reference is used for performance evaluation of the HDL OFDM Transmitter and
Receiver algorithms. The HDL AWGN MATLAB reference generates AWGN by accepting the signal-to-
noise ratio (SNR) in decibel (dB) and sets of seeds. For more details, see “HDL Implementation of
AWGN Generator” on page 4-44. The generated AWGN is added to the HDL OFDM Transmitter
output.

FFTLen = 128;
CPLen = 32;
usedSubCarr = 72; % Out of 128 subcarriers, 72 subcarriers are loaded with data

SNRdB = 30;
SNRdBSimInput = SNRdB*ones(length(txWaveform)+633,1);
seedsURNG1 = [121 719 511]; % Seeds for TausURNG1
seedsURNG2 = [2343 323 833]; % Seeds for TausURNG2
txScaleFactor = FFTLen/sqrt(usedSubCarr);

awgnNoise = whdlexamples.hdlawgn(SNRdBSimInput,seedsURNG1,seedsURNG2);

rxWaveform = txWaveform + (1/txScaleFactor)*awgnNoise(634:end);
fprintf('\n Applying the AWGN channel at %d dB\n', SNRdB);

 Applying the AWGN channel at 30 dB
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HDL OFDM Receiver MATLAB Reference

This section describes MATLAB reference of HDL OFDM Receiver.

This MATLAB reference includes time synchronization, CFO estimation and correction, OFDM
demodulation, header recovery, CPE estimation and correction, and data recovery.

The whdlexamples.OFDMRx function accepts rxWaveform, a transmitted waveform passed through
an AWGN channel.

The whdlexamples.OFDMRx function returns decoded bits rxBits and an array of structures,
rxDiagnostics, consisting of these eight fields.

• estCFO — Estimated carrier frequency offset
• rxConstellationHeader — Demodulated header constellation symbols
• rxConstellationData — Demodulated data constellation symbols
• softLLR — Demodulated soft LLR bits
• decodedCodeRateIndex — Decoded code rate index from header
• decodedModOrder — Decoded modulation order from header
• headerCRCErrorFlag — Status of header CRC
• dataCRCErrorFlag — Status of data CRC

OFDMRx

The whdlexamples.OFDMRx function is used to demodulate and decode the received rxWaveform.
This function internally calls these individual functions.

• OFDMFrequencyOffset — This function estimates the carrier frequency offset based on cyclic
prefix (CP) technique. The cyclic prefix portion of the received time-domain waveform is
correlated to estimate frequency offset.

• OFDMFrequencyCorrect — This function corrects the carrier frequency offset on the received
waveform using the estimated frequency offset.

• OFDMFrameSync — This function synchronizes the received waveform by performing correlation
using the reference signal. This step reduces the intersymbol interference while demodulating the
received waveform.

• OFDMDemodulation — This function converts the time-domain waveform to frequency-domain
waveform for further decoding. The object dsp.HDLFFT is used for HDL implementation of the
receiver.

• OFDMChannelEstimation — This function performs the estimation of the channel using two
reference signals. It uses least squares (LS) estimation technique. LS estimates are averaged to
improve channel estimation accuracy.

• OFDMChannelEqualization — This function performs zero forcing (ZF) equalization using
estimated channel. Then the received waveform that is free of the channel is used for header
recovery and data recovery.

• OFDMHeaderRecovery — This function recovers header information by performing symbol
demodulation, descrambling, and decoding. The success or failure of header information recovery
is indicated by the CRC status. This header recovery CRC status is given as an output to the
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receiver to indicate frame loss or recovery. When the CRC check fails, the header CRC status is 1.
Otherwise, it is 0.

• OFDMDataRecovery — This function performs symbol demodulation, Viterbi decoding,
depuncturing, and descrambling. The data is processed only when the header CRC check passes.
After descrambling, CRC check on the recovered data bits to indicate whether the packet is
errored. When the CRC check fails, the header CRC status is 1. Otherwise, it is 0.

fprintf('\n Receiving process started...\n');
[rxDataBits,rxDiagnostics] = whdlexamples.OFDMRx(rxWaveform);
fprintf('\n Reception completed\n\n');

% Plot constellation of header and data
scatterplot(rxDiagnostics.rxConstellationHeader(:))
title('Header Constellation')

scatterplot(rxDiagnostics.rxConstellationData(:))
title('Data Constellation');

 Receiving process started...

 Estimating carrier frequency offset ... 

 First four frames are used for carrier frequency offset estimation. 

 Estimated carrier frequency offset is -2.218976e-04 KHz.

 Detected and processing frame 5
------------------------------------------

 Header CRC passed

 Modulation: 16QAM, codeRate=1/2 and FFT Length=128

 Data CRC passed

 Data decoding completed
------------------------------------------

 Reception completed
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Verify Simulink Model with MATLAB Reference

In this section, Simulink HDL OFDM Transmitter, AWGN generator, and Simulink HDL OFDM
Receiver algorithms implemented in fixed point are compared with the equivalent MATLAB HDL
reference models implemented in floating point.

The Simulink model consists of an OFDM Transmitter that generates time-domain waveform for a
user-defined modulation order and code rate. The waveform is then passed through the AWGN
channel that introduces AWGN noise of the desired SNR in dB. Then, the OFDM Receiver algorithm is
used to demodulate and decode information bits. The outputs of the Simulink model are verified with
the MATLAB reference at each stage.

open HDLOFDMTxRx;
sim HDLOFDMTxRx;

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: whdlOFDMRx
### Successfully updated the model reference simulation target for: whdlOFDMTx

Build Summary

Simulation targets built:

Model       Action                       Rebuild Reason                         
================================================================================
whdlOFDMRx  Code generated and compiled  whdlOFDMRx_msf.mexw64 does not exist.  
whdlOFDMTx  Code generated and compiled  whdlOFDMTx_msf.mexw64 does not exist.  
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2 of 2 models built (0 models already up to date)
Build duration: 0h 16m 45.656s

Verify Simulink HDL OFDM Transmitter with MATLAB HDL OFDM Transmitter

In this section, plot the real and imaginary parts of the HDL OFDM Transmitter MATLAB reference
function output txWaveform as compared with the output of the “HDL OFDM Transmitter” on page
5-121 block.

matlabTxWaveform = txWaveform;
simulinkTxWaveform = simTxOut;

figure;
plot(real(matlabTxWaveform),'-bo')
hold on
plot(real(simulinkTxWaveform(1:length(matlabTxWaveform))),'-r.')
legend('MATLAB Tx waveform','Simulink Tx waveform');
title('Comparison of MATLAB Tx and Simulink Block Tx (Real Part)');
ylim([-0.2 0.2]);
xlabel('Time-Domain Samples');
ylabel('Amplitude');

figure;
plot(imag(matlabTxWaveform),'-bo')
hold on
plot(imag(simulinkTxWaveform(1:length(matlabTxWaveform))),'-r.')
legend('MATLAB Tx waveform','Simulink Tx waveform');
title('Comparison of MATLAB Tx and Simulink Block Tx (Imaginary Part)');
ylim([-0.2 0.2]);
xlabel('Time-Domain Samples');
ylabel('Amplitude');
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Verify Simulink HDL AWGN Generator with MATLAB HDL AWGN

In this section, plot the real and imaginary parts of the MATLAB HDL AWGN is compared with the
output of the Simulink AWGN Generator block.

matlabChannelOut= rxWaveform;
simulinkChannelOut = simChannelOut;

figure;
plot(real(matlabChannelOut),'-bo');
hold on;
plot(real(simulinkChannelOut(1:length(matlabChannelOut))),'-r.');
legend('MATLAB channel output','Simulink channel output');
title('Comparison of MATLAB Channel and Simulink Channel (Real Part)');
ylim([-0.2 0.2]);
xlabel('Time-Domain Samples');
ylabel('Amplitude');

figure;
plot(imag(matlabChannelOut),'-bo');
hold on;
plot(imag(simulinkChannelOut(1:length(matlabChannelOut))),'-r.');
legend('MATLAB channel output','Simulink channel output');
title('Comparison of MATLAB Channel and Simulink Channel (Imaginary Part)');
ylim([-0.2 0.2]);
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xlabel('Time-Domain Samples');
ylabel('Amplitude');

5 Reference Applications

5-118



Verify Simulink HDL OFDM Receiver with MATLAB HDL OFDM Receiver

In this section, plot the decoded bits of the MATLAB receiver as compared with the decoded bits of
the Simulink receiver.

matlabRxOut= rxDataBits;
simulinkRxOut = simRxDataBits;

figure;
plot(rxDataBits,'-bo');
hold on;
plot(simulinkRxOut(1:length(rxDataBits)),'-r.');
legend('MATLAB Rx bits','Simulink Rx bits');
title('MATLAB and Simulink decoded bits');
ylim([-0.25 1.25]);
xlabel('Time-domain samples');
ylabel('Amplitude');
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See Also

Related Examples
• “HDL OFDM Receiver” on page 5-136
• “HDL OFDM Transmitter” on page 5-121
• “HDL Implementation of AWGN Generator” on page 4-44
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HDL OFDM Transmitter
This example shows an OFDM-based wireless transmitter implemented in Simulink® that is
optimized for HDL code generation and hardware implementation.

This example shows the custom design of an orthogonal frequency-division multiplexing (OFDM)
based transmitter. This transmitter model accepts payload data through the input port. It allows you
to choose the modulation type and the punctured convolutional code rate of the data from a set of
values. These two parameters control the effective data rate of transmission and they can be provided
through the input ports of transmitter. The maximum data rate supported by the transmitter is 3
Mbps. The transmitter also accepts an input packetValid signal to control the transmission.

The transmitter in this example works in conjunction with the receiver in the “HDL OFDM Receiver”
on page 5-136 example. The transmitter has a MATLAB® floating point equivalent function described
in the “HDL OFDM MATLAB References” on page 5-107 example.

Transmitter Specification

This section explains the specifications of the transmitter related to the OFDM frame configuration
and structure, bandwidth, and sample rate.

The transmitter model accepts two parameters, modTypeIndex and codeRateIndex, which allow you
to specify the modulation type and punctured convolutional code rate, respectively, of the data. These
two parameters are explained in the following tables:

modTypeIndex

    Value    Represents modulation type
    _____    __________________________

      0                BPSK            
      1                QPSK            
      2                16QAM           
      3                64QAM           

codeRateIndex

    Value    Represents code rate
    _____    ____________________

      0              1/2         
      1              2/3         
      2              3/4         
      3              5/6         

OFDM Frame Structure

Every OFDM system has a frame structure that shows the distribution of samples in the frequency
domain across all its subcarriers. The frame structure is as shown in the figure. Each OFDM symbol
is comprised of 72 subcarriers, and each OFDM frame consists of 36 OFDM symbols. The frame
duration is 3 ms. The first OFDM symbol is formed by synchronization sequence (SS), second and
third symbols are formed by reference signals (RS), and the fourth symbol is formed by Header. Data
is filled from the fifth symbol to the last (36th) symbol. Pilots are inserted between data such that
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there is one pilot for every five data subcarriers as shown below. These pilots help detect and correct
phase errors at the receiver.

The OFDM parameters used in the model are given below:

           Parameter              Value  
    ________________________    _________

    Sample rate                 1.92 Msps
    Subcarrier spacing          15 KHz   
    FFT Length                  128      
    Bandwidth of OFDM signal    1.4 MHz  
    Active Subcarriers          72       
    Left guard subcarriers      28       
    Right guard subcarriers     27       
    Cyclic Prefix length        32       
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    Data symbols per frame      32       
    Pilots per data symbol      12       

Model Architecture

The following figure shows the high-level architecture of the OFDM transmitter. There are five
different signals that form the OFDM frame: SS, RS, Header, Pilots, and Data. SS, RS, and Pilots are
the same for every frame. They are stored in seperate look up tables (LUT) and accessed whenever
required. Header and Data vary based on the inputs given to the transmitter. Header bits are formed
based on the modulation type and code rate input values. These header bits are processed through
the Header chain as shown in the figure. Payload data is provided as an input to the transmitter. This
data is processed through multiple stages in the Data chain. Individual stages in the Header and Data
chains are explained in further sections.

These five signals are multiplexed based on their valid signals and stored in a RAM. The RAM holds
these signals for a duration of one frame. Data stored in the RAM is read out and modulated by the
OFDM Modulator block. The OFDM modulated signal is filtered with a passband frequency of 1.4
MHz and sent out as transmitter output.

File Structure

This example uses two Simulink models, an initialization script, and a MATLAB function:

• whdlOFDMTransmitter.slx — This is the top-level model in this example. It has an OFDM Tx
subsystem that refers to the whdlOFDMTx.slx model. There is external interface circuit for the
OFDM Tx subsystem, which provides inputs and collects outputs from the subsystem. Running this
model runs the remaining three files.

• whdlexamples.OFDMTransmitterInit — This script initializes the
whdlOFDMTransmitter.slx model. The script is called in the InitFcn callback of the model.

• whdlOFDMTx.slx — This model implements the transmitter with total configurability. The
whdlOFDMTransmitter.slx model refers to this model as explained above.

• whdlexamples.OFDMTxParameters — A function that generates parameters required for the
whdlOFDMTx.slx model. This function is called in the Model Workspace of the model.
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Transmitter Interface

The top level whdlOFDMTransmitter.slx model shows the OFDM Tx subsystem and its interface.

Model Inputs:

• modTypeIndex — Selects the type of symbol modulation to be applied to payload data, specified as
a ufix2 scalar. This port accepts values 0, 1, 2, and 3 which correspond to modulation types BPSK,
QPSK, 16QAM, and 64QAM.

• codeRateIndex — Selects the code rate of punctured convolutional code to be applied to payload
data, specified as a ufix2 scalar. This port accepts values 0, 1, 2, and 3 which correspond to code
rates 1/2, 2/3, 3/4, and 5/6.

• packetValid — Controls transmission of frames, specified as a Boolean scalar. If packetValid is 1,
the transmitter outputs a valid OFDM frame for given input payload data, modTypeIndex and
codeRateIndex values. If packetValid is 0, the transmitter outputs a dummy frame without the
given input configuration and data.

• dataIn — Input payload data, specified as a Boolean scalar.

All input ports run at a sample rate of 30.72 Msps to support different configurations.
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Model Outputs:

• txData — Transmitter output, returned as a complex scalar with fixdt(1,16,13) datatype sampled
at 1.92 Msps.

• txValid — Control signal that validates txData, returned as a Boolean scalar sampled at 1.92 Msps.

• sampleInParam — Control signal used to sample modTypeIndex, codeRateIndex and packetValid
inputs, specified as a Boolean scalar sampled at 30.72 Msps.

• dataReady — Control signal that samples input payload data, dataIn, specified as a Boolean scalar
sampled at 30.72 Msps.

Sample Input Signals

The Sample Input Signals subsystem samples modTypeIndex, codeRateIndex and packetValid signals
based on the sampleInParam signal. This subsystem provides outputs only when there is an active
sampleInParam signal and retains the previous outputs if the sampleInParam signal is inactive. The
subsystem stores given input modOrder and codeRateIndex values in two LUTs as shown in the
figure. If packetValid is 1, corresponding modOrder and codeRateIndex values are selected from
LUTs. The Source Coding function maps modOrder values 2, 4, 16, and 64 to the corresponding
modTypeIndex values 0, 1, 2, and 3 and sets 1 (QPSK) as the default value. It also takes
codeRateIndex values 0, 1, 2, and 3 from the LUT and sets 0 (1/2 code rate) as the default value. If
packetValid is 0, the LUTs are ignored.

Select Payload Data

The Select Payload Data subsystem selects input payload data based on the dataReady signal. It has a
counter that increments when the dataReady signal turns active. There is an LUT that stores the
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given input payload data. Data from this LUT is selected based on the counter value. There is an
additional circuit that returns zeros as data after the counter reaches maximum count.

Structure of the Transmitter

The whdlOFDMTx.slx model is called within the OFDM Tx subsystem. It generates an OFDM
transmitter waveform by processing input signals in multiple stages as shown below.

whdlOFDMTx

Frame Controller and Input Sampler

The Frame Controller and Input Sampler subsystem has a counter that increments for a frame
duration of 3 ms and then restarts. The counter restarts from 0 at the beginning of every frame and
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generates the sampleInParam signal to sample input signals modTypeIndex, codeRateIndex, and
packetValid. Based on the sampled modTypeIndex and codeRateIndex values, corresponding
transport block size for the frame is selected from the Transport Block Size LUT. Then, the dataReady
signal becomes active to accept the input data, dataIn, of size equal to transport block length. If
sampled packetValid signal is false, dataReady remains inactive indicating generation of a dummy
frame that does not require any input data. This subsystem also generates control signals for SS, RS,
Header, Pilot, and Data generation that is carried out in further stages.

Frame Generator

The Frame Generator subsystem consists of five subsystems that generate SS, RS, Header, Pilot, and
Data signals, which are later OFDM-modulated.

Frame Generator/SS

The SS (Synchronization Sequence) subsystem accepts ssSet control signal, generated from the
Frame Controller and Input Sampler subsystem. It is generated considering the length of SS
sequence. This signal initially resets the counter. Then, the counter keeps incrementing and
simultaneously returns SS from an LUT. Once ssSet becomes inactive, the counter stops. Output from
LUT is upsampled by a factor of 2 to maintain the same sample time as that of the Header and Data
subsystems. RS and Pilot subsystems operate in a similar way by storing the sequences in LUTs and
accessing them whenever required.
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Frame Generator/Header

The Header subsystem accepts modTypeIndex, codeRateIndex and fftLenIndex as inputs. A headerSet
signal starts the header formation. The Header Formation function converts the modTypeIndex and
codeRateIndex values into their binary equivalents. For example, a modTypeIndex value of 1 is
converted into two bits 01. Similarly, codeRateIndex values are converted into two equivalent bits. To
learn more about these indices, refer to Transmitter Specification. fftLenIndex is not configurable
and its value is fixed to 0. It is converted to 000, which represents an FFT length of 128. fftLenIndex,
modTypeIndex, and codeRateIndex are represented using 3, 2, and 2 bits, forming a total of 7 bits.
Additionally, 15 spare bits are added, all currently set to 0, forming a total of 22 Header bits.

These 22 bits are processed as shown below. For proper error detection, 8 CRC bits are padded using
the General CRC Generator HDL Optimized block with [8 7 4 3 1 0] as the CRC polynomial.
These 30 bits, that is (22 + 8), are encoded using the Convolutional Encoder block with [171 133]
as the polynomial and a constraint length of 7. The encoding is done in terminated mode which adds
6 null bits, that is (7 - 1), to the CRC padded data. After encoding, these 36 bits result in 72 bits due
to the 1/2 rate encoding. The output of the Convolutional Encoder block is a two-element vector that
is serialized using the Serializer1D (HDL Coder) block leading to rate transition by a factor 2. These
72 bits are BPSK-modulated using the LTE Symbol Modulator block to form Header symbol.

Frame Generator/Data

The Data subsystem stores input payload data, dataIn, and processes it through the Data chain.

5 Reference Applications

5-128



Frame Generator/Data/Data and Control Signal Generation

The Data and Control Signal Generation subsystem consists of a RAM where input payload data,
dataIn, is stored. A dataSet signal reads data from this RAM. This subsystem generates start, end,
and valid control signals for the RAM data. It even selects the puncture vector based on the
codeRateIndex.

Frame Generator/Data/Data Chain
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Payload data from RAM and the control signals are given as inputs to the General CRC Generator
HDL Optimized block, which appends a 32-bit CRC to the data with [32 26 23 22 16 12 11 10
8 7 5 4 2 1 0] as the CRC polynomial. This CRC-padded data is scrambled with  as
the polynomial and [1 0 1 1 1 0 1] as the initial state. The scrambled data is encoded using the
Convolutional Encoder block in terminated mode using [171 133] as the polynomial and a
constraint length of 7 . This output is punctured using the Puncturer block with the puncture vector
selected in the Data and Control Signal Generation subsystem. The output of the Puncturer block is a
two-element vector and is serialized using Serializer1D (HDL Coder) block. The resultant data is
modulated using the LTE Symbol Modulator block using the modulation pattern selected based on
modTypeIndex.

Multiplexer

The Multiplexer subsystem multiplexes the SS, RS, Header, Pilot, and Data signals based on the
corresponding valid signals that are generated by the Frame Generator subsystem.

Frame Formation and OFDM Modulation

The Frame Formation and OFDM Modulation subsystem takes in the multiplexed dataOut and
validOut signals and writes them into a Dual Rate Dual Port RAM (HDL Coder). This RAM reads and
writes data at different rates. Data is written into the RAM at 61.44 Msps. An LUT contains addresses
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for writing data into RAM. The RAM is filled with data such that it forms an OFDM frame structure as
shown in the previous sections.

The OFDM Modulator Valid Generation subsystem generates a valid input signal for the OFDM
Modulator block at a sample rate of 1.92 Msps. This valid signal is in synchronization with the ready
signal of OFDM Modulator. The valid signal is also used to generate a RAM address to read data from
the RAM. The Control Packet Output subsystem selects the OFDM Modulator output based on
packetValid. It gives out valid OFDM output in the presence of packetValid and a dummy frame with
random SS in its absence.

Discrete FIR Filter HDL Optimized

The output of the Control Packet Output subsystem is filtered with a passband frequency of 1.4 MHz
using the Discrete FIR Filter HDL Optimized (DSP System Toolbox) block . The filter coefficients are
computed by the whdlexamples.OFDMTxParameters function. Output of the filter forms the final
output of transmitter.

Run the Transmitter

The transmitter can be connected back-to-back with the receiver that is explained in the “HDL OFDM
Receiver” on page 5-136 example. For more information on how to use the transmitter and receiver
Simulink models back-to-back, refer to the “HDL OFDM MATLAB References” on page 5-107
example.

To run the transmitter model, OFDMTxVerification.m script is provided with this example. The
script chooses a custom frame configuration, and payload data, and simulates the model. The script
also collects the simulation outputs and validates them.

NOTE: These files are not available on the MATLAB search path. To copy these files locally to the
user path, you must open this example.

Verification and Results

In this section, the OFDM Transmitter Simulink model is validated by comparing its output with its
floating point equivalent function, whdlexamples.OFDMTx. For more information on this MATLAB
function, see the “HDL OFDM MATLAB References” on page 5-107 example. To compare the output
of the Simulink model with the MATLAB function, run the OFDMTxVerification.m script. Note that
for comparison with whdlexamples.OFDMTx, packetValid should be continuous.
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>> OFDMTxVerification

### Starting serial model reference simulation build
### Model reference simulation target for whdlOFDMTx is up to date.

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 1m 36.745s
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HDL Code Generation

To generate HDL code for this example, you must have HDL Coder™. Use makehdl and makehdltb
commands to generate HDL code and HDL testbench for the OFDMTx subsystem. Testbench
generation time depends on the simulation time.

The resulting HDL code is synthesized for the Xilinx® Zynq®-7000 ZC706 evaluation board. The post
place and route resource utilization is shown in the table below. Maximum frequency of operation is
227 MHz.

       Resources       Usage
    _______________    _____

    Slice Registers    5819 
    Slice LUT          3631 
    RAMB36             5    
    RAMB18             12   
    DSP48              24   

See Also
Blocks
Convolutional Encoder | Discrete FIR Filter HDL Optimized | General CRC Generator HDL Optimized
| LTE Symbol Modulator | OFDM Modulator | Puncturer | Serializer1D
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Related Examples
• “HDL OFDM Receiver” on page 5-136
• “HDL OFDM MATLAB References” on page 5-107
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HDL OFDM Receiver
This example shows an OFDM-based wireless receiver implemented using Simulink® blocks
optimized for HDL code generation and hardware implementation.

The model shown in this example receives data and decodes it based on the orthogonal frequency
division multiplexing (OFDM). The main purpose of this example is to model a custom HDL OFDM
wireless communication receiver that can recover information in a real-time scenario and supports
data rates up to 3 Mbps. This model enables you to configure parameters: symbol modulation types
such as BSPK, QPSK, 16-QAM, and 64-QAM and code rates 1/2, 2/3, 3/4 and 5/6 through punctured
convolution encoding. This model enables you to control impairments such as carrier frequency offset
(CFO), carrier phase offset (CPO), and rayleigh fading channel, which significantly affect OFDM-
based communication system.

The receiver in this example works in conjunction with the transmitter in the HDL OFDM
Transmitter example. For more information on the transmitter and the transmitted frame format,
see the “HDL OFDM Transmitter” on page 5-121 example. The receiver in this example has a
MATLAB® floating point equivalent function described in the “HDL OFDM MATLAB References” on
page 5-107 example.

Model Architecture

The following figure shows the architecture of an OFDM Receiver. The receiver samples the input at
1.92 Msps. These samples stream into the Rx Filter. The output from the Rx Filter stream into the
Frequency Estimator and the Frequency Corrector. The Frequency Estimator and the Frequency
Corrector estimate and correct CFO respectively and the samples stream into the Synchronizing
Sequence (SS) Detector. The output of the SS Detector is used for the time synchronization. The time
synchronized samples stream into the OFDM Demodulator, which demodulates the input and
generates the frequency-domain subcarriers. The Subcarrier Parser parses the channel reference
subcarriers, header subcarriers, and data subcarriers. The channel reference subcarriers stream into
the Channel Estimator, which estimates the channel frequency response. The Channel Equalizer uses
these estimates to equalize the header and data subcarriers in the frequency domain. The Header
Recovery recovers the header information using the channel-equalized header subcarriers. The CPE
Estimator estimates the common phase error (CPE) in the data sub carriers that get corrected by
CPE Corrector. The Data Recovery uses the header information and the CPE-corrected data
subcarriers to decode the data bits.
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File Structure

Two Simulink models and three MATLAB files are used to construct this example.

• whdlOFDMReceiver.slx — Top level OFDM receiver Simulink model
• whdlOFDMRx.slx — Reference model used by the whdlOFDMReceiver.slx
• whdlexamples.OFDMReceiverInit.m — Initialization script for whdlOFDMReceiver.slx

initialized in the model's InitFcn callback.
• whdlexamples.OFDMRxParameters.m — Initialization function for whdlOFDMRx.slx initialized

in the Model Workspace and model's InitFcn callback
• whdlexamples.OFDMTx.m — MATLAB floating point equivalent transmitter function to generate

Tx waveform in whdlexamples.OFDMReceiverInit.m

Receiver Interface

This figure shows the top-level model in this example.
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Model Inputs:

• dataIn — Input data, specified as a complex signed 16-bit signal sampled at 1.92 Msps.
• validIn — Control signal to validate the dataIn, specified as a Boolean scalar.
• impairmentControl — Bus signal to control the channel impairments.

The impairmentControl bus comprises following signals:

• frequencyOffsetCorrectionType — Control signal to indicate whether to use internally
estimated frequency offset or use externally provided frequency offset for
offset correction, specified as Boolean scalar.

• externalFrequencyOffset — Real signed 14-bit CFO with range from -7400 Hz to 7400 Hz provided
externally for CFO correction.

• channelEqualizerControl — Control signal to indicate whether to enable or disable channel
equalization, specified as a Boolean scalar.

• CPECorrectionControl — Control signal to indicate whether to enable or disable CPE correction,
specified as a Boolean scalar.

Model Outputs:

• dataOut — Decoded output data bits, returned as a Boolean scalar.
• validOut — Control signal to validate the dataOut, returned as a Boolean scalar.
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• diagBus — Status signal with diagnostic outputs, returned as a Bus signal.

Structure of the Receiver

The OFDM Rx subsystem performs a set of operations in a sequence. This subsystem uses the
whdlOFDMRx.slx reference model. This reference model is initialized in its Model Workspace and
model's InitFcn callback using the whdlexamples.OFDMRxParameters function. The following
figure shows the top-level subsystems in the reference model.

Synchronization and OFDM Demodulation

The Synchronization and OFDM Demodulation subsystem performs frequency and time
synchronizations and OFDM demodulation.

The Frequency and Time Synchronization subsystem comprises Timing Adjust MATLAB function
block and CFO Estimation and Correction and SS Detection subsystem.
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The CFO Estimation and Correction and SS Detection subsystem comprises CFO Estimation and SS
Detection subsystem and Frequency Correction Nx subsystem, which perform frequency correction
for the input signal. The estimate from the CFO Estimation and SS Detection subsystem is used for
frequency correction if the frequencyOffsetCorrectionType signal on the top-level model interface is
set to use internally estimated frequency offset. The externalFrequencyOffset is used for
frequency correction if the frequencyOffsetCorrectionType signal is set to use externally
provided frequency offset.
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The CFO Estimation and SS Detection subsystem comprises CFO Estimation subsystem, Start
Controller MATLAB function block, Sync Signal Search subsystem, and Frequency Correction 1x
subsystem that performs frequency correction on input signal.

The CFO Estimation subsystem uses the cyclic prefix correlation technique to estimate the CFO of the
input signal. The CyclicPrefixCorrelator subsystem estimates one CFO value for every six OFDM
symbols by averaging all the estimates in six OFDM symbols. The AngleAtMaximum subsystem
selects the strongest correlation peak for every six OFDM symbols and records its phase angle. The
AngleFilter subsystem implements an averaging filter to average all the recorded phase angles for a
duration of 12 ms. The resulting phase angle serves as a final CFO estimate.
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The Sync Signal Search subsystem implements the SS correlation. SS detection is performed by
continuously cross-correlating the received signal with the SS signal in the time domain. In addition,
the energy of the signal within the span of the correlator is computed on each time step and then
scaled to generate a threshold. The Max Peak Searcher subsystem begins searching for the maximum
correlation peak after 12 ms and searches for every 3 ms time window and records the timing offset.
The Start Controller function block indicates the end of 12 ms duration to the Max Peak Searcher
subsystem.

The timing offset recorded at the maximum correlation value by the Max Peak Searcher is transferred
to the Timing Adjust MATLAB function block to synchronize timing.

The OFDM Demodulator block demodulates the synchronized samples and generates subcarriers.

Channel and CPE Estimation and Correction

The Channel and CPE Estimation and Correction subsystem estimates the channel frequency
response, equalizes the channel, performs CPE estimation, and corrects the CPE.
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The Reference Signal Parsing MATLAB function block separates the OFDM symbols reserved for
computing channel estimates.

The OFDM symbols reserved for computing channel estimates are streamed through Channel
Estimation subsystem. The OFDM Channel Estimator block averages the estimates from the two
symbols and outputs the final channel estimates. The estimates are streamed into the Channel
Equalization subsystem, which stores the estimates in a RAM and performs frequency-domain
channel equalization for all the remaining OFDM symbols in the frame.

The Header and Data Parsing MATLAB function block separates the OFDM symbols corresponding to
header and data symbols.
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The frequency domain channel-equalized data subcarriers stream through the Common Phase Error
Estimation and Correction subsystem. In the frequency estimation process, there is always a small
estimation error due to the channel impairments. This estimation error results in a residual frequency
offset in the channel-equalized subcarriers. This results a CPE in all the subcarriers in an OFDM
symbol and changes from symbol to symbol. The CPE Estimation subsystem estimates the CPE on
each OFDM symbol using the 12 pilot subcarriers. The pilots are the known subcarriers and any
phase rotation in the received symbols is estimated by using the pilots. The estimates drawn from the
same symbol are averaged to get the final estimate. The symbol is stored in the Symbol Buffer
MATLAB function block during estimation. Once the estimate is ready, the symbol is read from this
buffer block and the CPE Correction subsystem corrects the CPE in the data subcarriers with that
estimate.

Header and Data Recovery

The Header and Data Recovery subsystem recovers the header information and the data bits.
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The Header Recovery subsystem recovers the header information to decode data bits. The frequency
domain channel-equalized header subcarriers stream into the Header Recovery subsystem. The LTE
Symbol Demodulator block performs BPSK soft symbol demodulation. The Channel Coding subsystem
is equipped with Viterbi Decoder block, which performs 1/2 rate viterbi decoding. The General CRC
Syndrome Detector HDL Optimized block performs 8-bit CRC checksum and validates the decoded
bits from the Viterbi Decoder block. The CRC syndrome detector block generates an error signal, if
the CRC checksum fails.

The Data Recovery subsystem uses the header information to decode the data bits. The header
information is stored in the registers. These registers are used to access the header information. The
LTE Symbol Demodulator block performs soft bit BPSK, QPSK, 16-QAM or 64-QAM symbol
demodulation associated with the modulation type retrieved from the header information. The
Channel Coding subsystem is equipped with Depuncturer and Viterbi Decoder blocks. Each code rate
is assigned a predefined punctured vector pattern. Based on the code rate retrieved from the header
information, the Channel Coding subsystem performs depuncturing followed by viterbi decoding. The
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decoded bits are streamed through the Descrambler subsystem. The General CRC Syndrome Detector
HDL Optimized block performs 32-bit CRC checksum and validates the descrambled bits. The CRC
syndrome detector block generates an error signal, if the CRC checksum fails.

Diagnostic Bus Formation

The Diagnostic Bus Formation subsystem creates a bus signal for some status signals of the receiver.
This bus can be used to analyze the receiver when deployed onto the hardware.

The data bits are decoded in the Data Recovery subsystem and bits stream out of the receiver and are
stored to workspace in the Capture Data Bits subsystem in the top-level receiver model. The
Diagnostics Decoder subsystem decodes the source-coded header information and counts the number
of synchronized frames, number of header CRC passes and failures, and the number of data CRC
passes and failures in the bus signal formed in the Diagnostic Bus Formation subsystem. The
Simulink display blocks display the Diagnostics Decoder information.
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Run the Receiver

Connect the receiver back-to-back with the transmitter in the “HDL OFDM Transmitter” on page 5-
121 example and run the Simulink model. For more information on how to connect the transmitter
and the receiver Simulink models back-to-back see the “HDL OFDM MATLAB References” on page 5-
107 example.

The following files describe a procedure to initialize, generate inputs, run, and verify the
whdlOFDMReceiver.slx model using the whdlexamples.OFDMReceiverInit.m initialization
script. You can choose a custom Tx waveform and a channel impairment of your choice from the
Custom Frame Configuration section in these files.

• OFDMRxRealTimeSimulationDisplay.m - This script mimics a channel in a real-time scenario.
You can choose any available channel impairment and run the script. The script displays the
outputs and generates plots of estimated frequency offset and SS correlation.

• OFDMRxFadingChannelResponseDisplay.m - This script mimics only the fading channel. You
can choose only the fading channel impairment and run the script. The script displays the outputs
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and generates the plots of channel impulse response and the comparison of estimated frequency
response with the frequency response, derived from the impulse response.

NOTE: These files are not available on the MATLAB search path. To copy these files locally to the
user path, you must open this example.

Verification and Results

The whdlexamples.OFDMRx.m script is a MATLAB floating point equivalent of the reference model
whdlOFDMRx.slx. The Simulink model and MATLAB floating point equivalent script are compared in
the “HDL OFDM MATLAB References” on page 5-107 example.

Run the OFDMRxRealTimeSimulationDisplay.m script to run the receiver.

>> OFDMRxRealTimeSimulationDisplay

### Starting serial model reference simulation build
### Successfully updated the model reference simulation target for: whdlOFDMRx

Build Summary

Simulation targets built:

Model       Action                       Rebuild Reason                         
================================================================================
whdlOFDMRx  Code generated and compiled  whdlOFDMRx_msf.mexw64 does not exist.  

1 of 1 models built (0 models already up to date)
Build duration: 0h 7m 34.747s

 Number of header CRC failed = 0 per 4

 Number of bit errors = 0 per 15208
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Run the OFDMRxFadingChannelResponseDisplay.m script to run the receiver.

>> OFDMRxFadingChannelResponseDisplay

### Starting serial model reference simulation build

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 2m 44.917s

 Number of header CRC failed = 0 per 1

 Number of bit errors = 0 per 3162
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You can see the constellation plot on the constellation scope. The scopes can be activated by using
the Control Scope button in the whdlOFDMReceiver.slx model.
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HDL Code Generation

To generate the HDL code for this example, you must have HDL Coder™. Use makehdl and
makehdltb commands to generate HDL code and HDL testbench for the OFDM Rx subsystem. The
testbench generation time depends on the simulation time.

The resulting HDL code is synthesized for a Xilinx® Zynq®-7000 ZC706 evaluation board. The post
place and route resource utilization and are shown in the table below. The maximum frequency of
operation is 192 MHz.

       Resources       Usage
    _______________    _____

    Slice Registers    45122
    Slice LUT          36246
    RAMB36             8    
    RAMB18             9    
    DSP48              95   

See Also
Blocks
Depuncturer | General CRC Syndrome Detector HDL Optimized | LTE Symbol Demodulator | OFDM
Channel Estimator | OFDM Demodulator | Viterbi Decoder
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Related Examples
• “HDL OFDM Transmitter” on page 5-121
• “HDL OFDM MATLAB References” on page 5-107
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